w=(z 1) z把绝对值z=1写成w平面什么曲线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:05:18
因为|z|=1,所以Z^2一定=1,所以Z1=4-Z;又因为z=1或者-1,所以当z=1时,Z1=3;当z=-1时,Z1=5;所以|Z1|的最大值和最小值分别是3,5.
先计算Z1.Z1(1+i)=2i,因此Z1=1+i;令Z=cosθ+isinθ,则|Z-Z1|=√[(1-cosθ)^2+(1-sinθ)^2]=√(3-2cosθ-2sinθ)=√[3-2√2sin
设z=a+bi,z绝对值=2|z|=√(a^2+b^2)=2,a^2+b^2=4.(1)z+3i=a+bi+3i=a+(b+3)iz+3i绝对值=1√a^2+(b+3)^2=1a^2+(b+3)^2=
设z=a+bi那么(1+3i)z=(1+3i)(a+bi)=a+bi+3ai-3b=(a-3b)+(b+3a)i因为它是纯虚数那么a-3b=0--->a=3b把z带入w就有关于ab的关系式:w=(a+
A={z||z-2|≤2},B={z|z=1/2(z1)i+b,z1∈A,b∈R}设z=a+biz-2=a-2+bi(a-2)^2+b^2≤4a∈[0,4]b∈[-2,2]B:z=(a+bi)i/2+
由于1−z1+z=i,所以1-z=i+zi所以z=1−i1+i═(1−i)(1−i)(1+i)(1−i)=−2i2=−i则|1+z|=|1−i|=2故选C.
1/z=(z1+z2)/(z1z2)z=(5+10i)(3-4i)/(5+10i+3-4i)=(15+40-20i+30i)/(8+6i)=(55-10i)(8-6i)/(8+6i)(8-6i)=5(
z=1+i,则z1=1-i(1+z1)*z²(1+1-i)*(1+i)²=(2-i)*2i=4i-2i²=2+4i
首先不好意思楼主的提问还是有问题,复数是不会考到绝对值问题的.所以应该您看到得是模的符号,即是w的模等于5√2.(学了复数应该知道模是什么和怎么计算,如果不知道翻下资料书就可以了,在下就不解释了)解题
z1=1+2i,z2=2-i,z1+z2=1+2i+2-i=3+i1/z=3+iz=1/(3+i)=(3-i)/(3+i)(3-i)=1/10(3-i)=3/10-1/10i
复数哪来绝对值哦,那是模的平方,不是绝对值的平方.那个“Z把”应该是Z的共轭复数.
|z-z1|=2表示在复平面上以z1=-3i为心半径为2的圆,在这个圆上到原点最远的点是-5i,即|z|的最大值为5
若z=1+i,z1=1-i(1+z)×z1=(2+i)(1-i)=2-i+1=3-i
点击放大:
1z=1z1+1z2=z1+z2z1z2∴z=z1z2z1+z1又∵z1=5+10i,z2=3-4i∴z=(5+10i)(3−4i)5+10i+3−4i=55+10i8+6i=(55+10i)(8−6
设w=a+bi,由1+w=(3-2w)i得a+1+bi=2b+(3-2a)i,所以a+1=2b,b=3-2a,解得a=b=1,所以w=1+i,故z=|w|^2-w=2-(1+i)=1-i.
z1=z1+z2化为:z1+z1z2=z…①,z2=z21+z化为:z2+z2z=z2…②,②代入①可得:z1+z1(z2+z2z)=z,即z1+z1•z2+(z2z1-1)•z=0,∵z1=z1+z
z=cost+isintcos2t+isin2t+2cost+2isint+cost-isint
设z=a+bi,[z]=√(a^2+b^2)=1,a^2+b^2=1,1-b^2=a^2z^2-z+1=(a+bi)^2-a-bi+1=a^2-b^2-a+1+(2ab-b)i=2a^2-a+(2ab