Un收敛Vn发散,证明Un加Vn收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 06:59:59
Un收敛Vn发散,证明Un加Vn收敛
如果级数Un与级数Vn均发散,则级数(Un±Vn)的敛散性如何?

不确定,可能收敛也可能发散,以un+vn为例,举最简单的例子,设un=vn=1/n,它们都发散,un+vn=2/n也发散,设un=1/n,vn=-1/n,它们也都发散,但un+vn=0收敛.

正项级数un,vn收敛 求证 级数(un+vn)^2收敛 高手来 !

若正项级数un收敛,则un收敛到0,即存在N,当n>N时,un

若级数∑(n=1)un收敛,级数∑(n=1)vn发散,试证明级数∑(n=1)(un+vn)发散,求详细解答,谢谢

反证法:若级数(un+vn)收敛,则级数(vn)=级数(un+vn-un)=级数(un+vn)-级数(un)收敛.矛盾.

设正项级数∑Un收敛,数列{Vn}有界,证明级数∑UnVn绝对收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

已经知道 级数 ∑(un)^2 ∑(vn)^2 都收敛 证明 ∑(un+vn)^2 也收敛

(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2

设正项级数∑Un发散,Sn是Un的部分和数列,证明级数∑Un/Sn^2收敛.

正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2

设正项级数∑un和∑vn都收敛,证明:∑(un+vn)^2也收敛

由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0

证明:若级数 ∑Un^2及 ∑Vn^2收敛,则 ∑(Un/n)收敛

你有问题也可以在这里向我提问:

证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛

∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

设级数∑un收敛,证明∑(un+un+1)也收敛

这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(

已知级数∑Un收敛,若Vn/Un的极限是1,能否断定∑Vn收敛,为什么

对于正项级数来说是成立的,但对于任意项级数来说则不一定成立了再问:能举个例子吗?再答:比如说级数un=(-1)^n/√n显然交错级数收敛而vn=(-1)^n/√n+1/n易知limvn/un=1但vn

一个级数收敛的问题如果Sigma(Un)和Sigma(Vn)都发散,那么能否得出:Sigma(Min(Un,Vn))收敛

不能.考虑数列u(n)=1,v(n)=1,符合要求,但sigma(min(un,vn))显然发散.考虑数列u(n)为0,-1,0,-1,...,而数列v(n)为-1,0,-1,0,...,符合要求,但

已知∑Un收敛和∑Vn发散,判断∑(Un+Vn)的敛散性

∑(Un+Vn)肯定发散!证明:假如∑(Un+Vn)收敛,那么∑Vn=∑[(Un+Vn)-Un]=∑(Un+Vn)-∑Un,∑(Un+Vn)和∑Un都收敛,则它们的差∑Vn也收敛,这是和条件相抵触的,

若Un的级数收敛,则1/Un的级数是收敛还是发散

是发散的,可以用级数收敛的必要条件来判断.经济数学团队帮你解答.请及时评价.

级数Un^2收敛,证明Un收敛

这是错的.比如Un=1/n

级数un是收敛还是发散

这个级数是收敛的,而且由于是正数,还是绝对收敛的,因为ln(n+1)比n小很多,就是说它的增长速度非常小,(lnn)/n趋于0当n趋于无穷时,可以把原式除以1/n^2,这个是收敛的,而且比值是0,所以

设∑Un绝对收敛 ∑Vn收敛 证明∑UnVn绝对收敛

要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

un收敛,那么un^2是否收敛

稍等,给你上个图.