un收敛,根号u呢除n也收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:37:59
当然有∑un不发散的情况.例如,取u2k-1=u2k=(-1)^k/k(k=1,2……)从而,∑un收敛(因为其相当如两个交错级数)而∑(-1)^n*un=0.∑∣un∣=2∑1/n发散.从而∑un不
由于∑u²收敛,∑1/n发散,因此存在N,当n>N时,有u²
(un+vn)^2=(un)^2+2unvn+(vn)^2《(un)^2+2|unvn|+(vn)^2《2[(un)^2+(vn)^2]级数∑(un)^2∑(vn)^2都收敛,所以级数2[(un)^2
你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
看错题目了.Un=(-1)^n即可,|Un|->1,但是Un发散
由于当n趋于无穷时,un趋于0,vn趋于0,因此当n充分大时有0
你有问题也可以在这里向我提问:
这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
这是错的.比如Un=1/n
∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1
因为级数收敛,设ΣUn=A.n趋向于无穷大时可以取到所有的2n-1的数值.所以ΣU2n-1=A.得证.
条件说明Un奇数项形成的数列收敛,偶数项形成的数列收敛,这并不能保证Un收敛但是U3n这个数列将奇偶项结合在了一起,所以Un才会收敛,具体证明见图片
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
稍等,给你上个图.
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/
都不收敛.(1)un=(-1)^n/n∑Un收敛,∑U2n发散(2)取奇数项全为1,∑u2n收敛,∑Un发散再问:如果把∑U2n换成,∑(U2n-1+U2n)呢?再答:收敛再问:还有刚刚对于第二个问题