Un=n-1 n 1是否收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:57:00
果断收敛啦用比较判别法很容易得出结论的
发散.∑(n=1,∞)(un+10)=∑(n=1,∞)un+∑(n=1,∞)10,后者无穷大
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
当然有∑un不发散的情况.例如,取u2k-1=u2k=(-1)^k/k(k=1,2……)从而,∑un收敛(因为其相当如两个交错级数)而∑(-1)^n*un=0.∑∣un∣=2∑1/n发散.从而∑un不
你好!lim(n→+∞)Un^(1/n)=lim(n→+∞)n^(1/n)/lnn=lim(n→+∞)1/lnn=0所以原级数收敛
你的题目出错了,等号应在在后半部分!以下部分是积分判别法证明:关于级数1/n(lnn)^p有个类似p级数的性质:当p>1时,级数收敛;当p≤1时,级数发散.画出函数1/x(lnx)^p(x>2)的图象
级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛
∑(Un-1)既然收敛,就说明其Un-1必是无穷小量,从而当n趋向于无穷大时有Un-1趋向于0,从而limUn=1(n趋向于无穷大)
设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊
参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛
若∑(n=1)∞Un收敛,那么lim(n→∞)Sn存在,设为S那么lim(n→∞)S(n-1)=Slim(n→∞)un=lim(n→∞)[Sn-S(n-1)]=lim(n→∞)Sn-lim(n→∞)S
设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]
应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676
再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!
∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1
∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-
稍等,给你上个图.
-1/2,用收敛的必要条件.经济数学团队帮你解答.请及时评价.再问:谢谢还有道题目概念都不理解--再答:请先采纳,再追问。再问:少了阶乘符号了吧?再答:是抄漏了,不好意思。
只要举出反例即可.令U(n)=(-1)^n/ln(n+1)(+1是为了保证n=1时有意义),则U(n)是趋于零的交错数列,所以由Leibnitz判别法知∑U(n)收敛.(-1)^n*U(n)/n=1/