u=x^y,x=(t),y=(t)都是可微分,求du dt

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 09:11:27
u=x^y,x=(t),y=(t)都是可微分,求du dt
if ( x< y ) { t=x; x=y; y=t; } 怎么理解呢?

如果x再问:交换之后,是否从大到小的顺序输出呢?为什么呢???再答:如果你是这种情况的话,就是printf("%d%d",x,y);的话,就是按照从大到小的顺序,因为x和y交换啦,如果x开始时就大于y

设全集U={(x,y)|x,y属于R},集合M={(x,y)|(y+2)除以(x-2)=1},N={(x,y)|y不等于

设全集U={(x,y)|x,y属于R},集合M={(x,y)|(y+2)/(x-2)=1},则M={(x,y)|(y=x-4且x≠2}所以,M的补集为{(x,y)|(y≠x-4}∪{(2,-2)}集合

设全集U={(x,y)|x,y属于R},集合M={(x,y)|(y-3)除以(x-2)=1},N={(x,y)|y不等于

首先你要理解所给集合的元素代表什么.全集U为平面点集,M为两条射线(直线y=x+1除去点(2,3)),N表示平面内除去直线y=x+1以外的点.我想这样你应该能得出结果了吧?有问题继续问我.再问:能再说

u=f(x+x y+x y z),求导数

u=f(x+xy+xyz),u'=(1+y+yz)f',u'=(x+xz)f',u'=xyf'.

复合函数的求导 已知y=f(u),u=g(t),t=h(x),求y的导数.

这个叫求y的导函数,需要分别求导,y=f'(u)g'(t)h'(x)看懂了吗,手机编辑的,不太方便,解题过程可以表达为,y=f'(u)u'=f'(u)g'(t)t'=f'(u)g'(t)h'(x)

设函数u=u(x,y),由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0定义,求u对y的偏导

由于偏导符号不好打,以下略述我的思路和解法.首先认清题目已知的是f,g,z的函数形式,所以结果应该是它们的偏导的组合.有g(y,z,t),h(z,t)恒等于0,可以把z,t看成只是y的函数,即z=z(

二元函数u(x,y)=f(x)g(y)的充要条件是u(x,y)*u"(_xy)=u'(_x)*u'(_y)

必要性:若u=fg则u'x=f'gu'y=fg'u"xy=f'g'所以uu"xy=fg*f'g'=fg'*f'g=u'x*u'y必要性成立充分性:若uu"xy=u'x*u'yuu"xy-u'x*u'y

设函数u=f(xy,x/y),求:偏u/偏x,偏u/偏y?

∂u/∂x=[∂u/∂(xy)][d(xy)/dx]+[∂u/∂(x/y)][d(x/y)/dx]=yf₁'+(1/

多元函数微分学 F(x,y,z,u)=xyz+u(x+y+z-a)

第一题是用的拉格朗日数乘法计算条件极值.即在条件a=x+y+z下的乘积xyz的极值.设参数为u,构造拉格朗日函数F(x,y,z,u)=xyz+u(x+y+z-a)分别对四元函数求偏导,使其为零,联立方

u=x(z+y) z=sin(x+y) 求二阶偏导数σ2u/σxσy

σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)

u(x,y)为二元函数,x、y为自变量,a(x),b(y)为一元函数,求解微分方程:du(x,y)=a(x)u(x,y)

du(x,y)=a(x)u(x,y)dx+b(y)u(x,y)dy所以,du(x,y)/u(x,y)=a(x)dx+b(y)dy即d[lnu(x,y)]=a(x)dx+b(y)dy两边积分,得:lnu

已知x,y∈R*,x+y=xy,求u=x+2y最小值

1...x不等于1时y=x/(x-1)u=x+2x/(x-1)=(x-1)+2/(x-1)+3>=3+2√2此时x不为1能取到等号2...x=1时等式不成立故不可能所以最小值是3+2√2

u=f(x-y,y-z,t-z)

分别把x,y,z,t当做为之数,其余都是常数,求就行了再问:具体怎么做呢?麻烦写清楚些

设z=f(u),方程u=g(u)+∫ (上限x.下限y)p(t)dt确定u是x,y的函数,其中f(u),g(u)可微,p

想办法变换就行了,EASY再问:能详解一下吗?再答:上网没带笔,用画图工具算。如图,第一行是已知条件。第二行同时取负号,积分上下限交换第三行同时对上面式子求相应导数,注意与求解结果一致第四行继续对原来

设函数u(x,y)=q(x+y)+q(x-y)+定积分(x-y)到(x+y)p(t)dt,其中函数q具有二阶导数,p具有

u(x,y)=q(x+y)+q(x-y)+∫(x-y)到(x+y)p(t)dtu'x=q'(x+y)+q'(x-y)+p(x+y)-p(x-y)u'y=q'(x+y)-q'(x-y)+p(x+y)+p