u=f(x2-y2,exy),其中f为可导函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:53:45
设u=x2-y2,v=exy,则z=f(u,v)因此∂z∂x=∂f∂u∂u∂x+∂f∂v∂v∂x=2xf1′+yexyf2′∂z∂y=∂f∂u∂u∂y+∂f∂v∂v∂y=−2yf1′+xexyf2′∴
x2+xy+y2=(x+y)2-xy=2,所以(x+y)2=2+xy.2|xy|+xy≤x2+xy+y2=2,所以0≤xy≤2/3.或者-2≤xy≤0u=x2-xy+y2=(x+y)2-3xy=2-2
E(xy)=∫xy*f(xy)dxdy
解:u=x²+xy+y²-x-2y+3换元.可设x=a+b,y=a-b(a,b∈R)此时u=2(a²+b²)+a²-b²-a-b-2a+2b
x和Y的边缘概率密度分别为对函数f(x,y)对y和对x从负无穷到正无穷求积分,得到的结果分别为x的边缘概率密度:g(x)=1/[pi*(1+x^2)]y的边缘概率密度:h(y)=2/[pi*(1+4y
∵dudx=∂f∂x+∂f∂y•dydx+∂f∂z•dzdx…(1)由exy-xy=2,两边对x求导得:exy(y+xdydx)-(y+xdydx)=0解得:dydx=-yx.又由ex=∫x-z0si
/>f[u(x)]=u²(x)=e^2x(e的2x次方)u[f(x)]=e^f(x)=e^x²(e的x²次方)f[f(x)]=f²(x)=x⁴
是求x2/y2+y2/x2=吗x2-y2=xy则x/y-y/x=1两边平方得x^2/y^2-2+y^2/x^2=1所以x^2/y^2+y^2/x^2=3
(x²+y²)²+(x²+y²)-6-6=0(x²+y²)²+(x²+y²)-12=0(x²
解题思路:根据题目条件,由椭圆的知识可求解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/inclu
(x+y)^2=1+3xy(x-y)^2=1-xyu=(x+y)(x-y)|u|=√(x+y)^2√(x-y)^2=√(1+3xy)√(1-xy)=√[-3(t-1/3)^2+2/3]≤√6/3故-√
1设Z=cos(xy2)+3x/x2+y2,计算δz/δyδz/δy=-2xy*sin(xy2)-(3x*2y)/(x2+y2)22、设Z=f(x2-y2,exy),其中f(u,v)为可微函数,求dz
解题思路:椭圆解题过程:同学你好,如对解答还有疑问或有好的建议,可在答案下方的【添加讨论】中留言,我收到后会尽快给你答复。感谢你的配合!祝你学习进步,心情愉快!详细解答见附件。最终答案:略
证:(I)∵z=f(x2+y2),令u=x2+y2∴zx′=dzdu•∂u∂x=f′(u)xx2+y2zy′=dzdu•∂u∂y=f′(u)yx2+y2∴zxx=f″(u)•x2x2+y2+f′(u)
说明:eu应该是e的x次幂,dz/dx,dz/dy应该是偏导数.∵v=xy,u=x2-y2∴du/dx=2x,du/dy=-2y,dv/dx=y,dv/dy=x∵z=ln(e^u+v),∴dz/dx=
x=0或x=整负根号下1-y方
分别对x,y求偏导数得:f'(x)=2x+y-6f'(y)=2y+x-3令两者都为0,解得驻点为:(3,0)又分别对其求二阶偏导数:f''(x)=2=Af''(y)=2=C用f'(x)再对y求偏导数得
x2+y2+Dx+Ey+F=0的圆心为(-D/2,-E/2),因为圆关于y=x对称,则圆心一定在y=x上,即-D/2=-E/2,所以D=E,即D-E=0,答案为B
因为当f(x1,y1)=0以后.一条直线是f(x,y)=0另外一条直线是f(x,y)+f(x2,y2)=0这里点P(x2,y2)只是直线外一点.那么f(x2,y2)就是一个确定的函数值所以f(x,y)