S是直角三角形所在平面外一点,求异面直线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 15:09:48
SA=SC,则三角形ASC为等腰三角形AB=BC,则三角形ABC为等腰三角形D为AC的中点,则AC垂直于SD,AC垂直于BD,因为SD,BD属于三角形SBD且SD与BD交于D,所以AC垂直平面SBD
①因为SA=SC所以△SAC为等边三角形,且D为AC中点所以SD┴AC在直角三角形ABC中因为BD为三角形的中线所以BD=1/2AC即BD=AD又因为SA=SB,SD=SD所以△ADS与△BDS全等,
因为PO垂直于平面ABC,所以OA=OB=OC=根号下(PA平方-PO平方)=根号下(PB平方-PO平方)=根号下(PC平方-PO平方)所以O是三角形ABC的外心.
证明:因为D,E分别是SA,SB的中点,所以DE//AB(三角形中位线定理),同理DF//AC,所以平面DEF//平面ABC.
这个题目用的是"两个相交平面都垂直于第三个平面那么,这两个平面的交线就垂直于第三个平面".这个问题不知道你的老师讲过没有.
取BC中点D,连接OD,PD∵PB=PC,D为BC中点∴PD⊥BC∵O为AB中点,D为BC中点∴OD‖AC而AC⊥BC,故OD⊥BC,即PD⊥BC,OD⊥BC,所以BC⊥平面POD(定理:如果一条直线
取BD中点O连接MO,则MO//SA故SA//平面BMD
过B做VA的垂线垂足为E,因为两个面垂直,又有BE垂直于VA,所以BE垂直于面VAC,所以BE垂直AC,又有VB垂直AC,所以AC垂直于面VAB,所以AC垂直于AB,角BAC为直角,证毕再问:是不是一
做SO⊥ABC于O连接OA,OB,OC∵SA=SB=SC∴OA=OB=OC∴O是底面ABC的外心即斜边AC中点D,∴O与D重合∴SD垂直于面ABC第二种连BD,D为斜边AC中点∴BD=CD,△DSC为
(1)取AB的中点O,连PO,CO.∵PA=PB,OA=OB,∴PO⊥AB.∵△ABC是等腰直角三角形,∠ACB=90°,∴OA=OB=OC,∵PA=PB=PC,PO是公用边∴△POA≌△POB≌△P
你的辅助线证明你的思路是对的.PQ⊥AB利用PAB边长关系写出PQ²然后证明PQ²+CQ²=PC²(CQ=1/2AB)PCQ为直角三角形,PQ⊥QCPQC为两平
设AC、BD交点为N,则N为AC的中点,M是SC的中点,即三角形CAS中,SA//MN,所以SA//平面BMD
因为△ABC是等腰直角三角形,AC=BC=a所以AB=二分之根号2a又因为PA=PB=根号2a所以△PAB为等边△过P作PD垂直于BA交AB于D点则D为AB中点(因为△PAB为等边△)所以可求出PD=
没说哪个角是直角?再问:没说再问:我给你看一下题目再问:再答:那也只能是角abc了,你等等再问:嗯嗯再答:你看,第一个问,只要证明sd垂直abc平面上相交的两条直线就可以了吧再答:因为sa=sc,d为
因为SA=SC,D为AC中点所以SD⊥AC又因为AC属于平面ABC所以SD⊥平面ABC
(1)PC=AB=√2*AC PC与平面ABC的角就是角PAC,cos角PAC=AC/PC=AC/√2*AC=√2/2 所以角PAC=45°(2)过C作AB的垂线交AB于D,D即A
设D点为AC的中点,连接SD,BD,因SA=SC,三角形SAC是等腰三角形,则SD⊥AC,同理,BD⊥AC,三角形ABC是等腰直角三角形,BD是斜边AC上的高,BD=1/2*AC=DC三角形SDB和三
(1)取AC中点O,连接OB则OB=OC=OA由SA=SB=SC知SO垂直于面ABCS0=√(SB^2-OC^2)=12点S到平面ABC的距离SO=12(2)由(1)知知SO垂直于面ABC设SB与平面
(1)SA=SC,DA=DC=>SD⊥AC设BC中点为E,连DE,SE同理SB=SC,EB=EC=>SE⊥BCDB=DC,EB=EC=>DE⊥BC所以BC⊥平面SDE所以BC⊥SD又AC⊥SD所以SD
取AB中点为E连DE,SE因直角三角形ABC,所以AB⊥BC,因AE=EB,AD=DC,所以ED‖BC即DE⊥AB又因SA=SC,D为中点所以SD⊥AC即面SDE⊥面ABC所以SD⊥BD,又SD⊥AC