STC=Q3-5Q2 20Q 50
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:47:58
MC=3Q²-12Q+30,令MC=MR,即3Q²-12Q+30=30,解得Q=4,即利润最大化产量.STC=4³-6×4²+30×4+60,TR=30×4=1
AC(Q)=TC(Q)/Q=0.04Q2-0.8Q+10+5/QAC(Q)=AVC(Q)+AFC(Q)则AVC(Q)=0.04Q2-0.8Q2+10AFC(Q)=5/Q当Q=0.8/(2*0.04)=
STC是短期总成本固定成本FC=STC(Q=0)=9可变成本VC=TC-FC=8Q^3-12Q^2+3Q平均成本AC=TC/Q=8Q^2-12Q+3+9/Q平均固定成本AFC=FC/Q=9/Q平均可变
MC=STC′=0.3Q²-12Q+140MR=d(PQ)/dQ=150-6.5QMC=MR=>0.3Q²-5.5Q-10=0Q=20因此均衡产量为20均衡价格为P=150-3.2
由STC,解的MC=0.3Q^2-12Q+140.由P=150-5Q得TR=150Q-5Q^2,得MR=150-10Q.均衡时MC=MR,解得Q=10.2、Q=10时,解得P=1003.利润π=TR-
(P=a-bQ)均衡条件:MR=SMC即a-2bQ=SMC,SMC=d(STC)/dQ=0.3Q^2-12Q+140=MR=150-2*3.25Q得到Q=20
AVC=0.1Q²-2Q+15短期供给函数是MC在AVC以上的部分,所以,P=0.3Q²-4Q+15(P>=5)
短期均衡产量Q=20均衡价格P=20
1.完全竞争厂商的短期供给曲线就是边际成本曲线高出平均可变成本最低点的部分。由短期成本函数STC=Q3-10Q2+100Q+1000知:SVC=Q2-10Q+100,对该式求导得出SVC最小时的Q为5
对短期成本函数求一阶导数,可以得出MC=0.3Q2-4Q+15(此处我认为您的结果有误,因为Q^3的系数是0.1)再将上述方程反解出Q=...的形式,即为短期供给函数.
(1)smc=0.3Q^2-4Q+15P=MR=MC得Q=(最重要的是理解P=MR=MC)(2)smc=0.3Q^2-4Q+15AVC=0.1Q3-2Q2+15Q令SMC=AVC(3)短期供给函数为S
1.由STC=0.1Q3-2Q2+15Q+10得MC=0.3Q2-4Q+15MR=P=55=MCQ=20TR=P*Q利润=STC-TR当P=AVC时必须停产P=0.1Q2-2Q+15+10/QP=MC
先求出停业点,即AVC的最低点AVC=STC/Q=0.04Q²-0.8Q+10,令dAVC/dQ=0.08Q-0.8=0,得Q=10,再求出MC=dSTC/dQ=0.12Q²-1.
完全竞争行业,利润最大化时:MC=MR=P所以3Q2-12Q+10=10Q=4π=40-13=27
1、要求AVC最小时的产量,因为价格不变,所以是求SVC最小时的产量,因为SFC不变所以是求STC最小时的产量通过对STC(Q)求导,并令STC’(Q)=3Q²-20Q+27=0求得Q=±1
对Q求导,MC=3Q^2+200Q+90
(1)可变成本部分5Q3-4Q2+3Q不变成本部分50(2)TVC(Q)=5Q3-4Q2+3QAC(Q)=STC(Q)/Q=5Q2-4Q+3+50/QAVC(Q)=可变成本/Q=5Q2-4Q+3AFC
短期边际成本SMC=STC的导数,于是SMC=240-8Q+Q^2(Q^n表示Q的n次方)于是SMC在Q=4时达到最小(开口向上的二次函数在对称轴处取得最小值)AVC=(240Q-4Q^2+(1/3)
MC=STC'=3Q^2-9Q+30利润最大化条件MR=P=60=MC3Q^2-9Q+30=60Q^2-3Q-10=0Q=5利润π=PQ-STC=5*60-(125-4.5*25+150+100)=1