spss相关性P值和R值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 12:58:37
分析—描述统计—交叉表,如上图,选中行变量和列变量后,点统计量,选择“卡方”,继续,确定.结果图看sig值,若小于0.05,说明差异显著.统计人刘得意是否可以解决您的问题?再问:能给我截个图看看吗?我
这个不是回答过了么?
1、简单的理解就是R值越大,相关性越强.但是一般会以R的平方和修正后的R平方为参考值,值越大,相关性越强.2、在线性回归中,相关性就是自变量与因变量的相关性程度,相关性越高,说明你选择的自变量越合理.
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
理论上来说p值是越小,差异性越显著0.01或0.05是统计学上一般的常用数字但是具体到不同的学科,可能要求不一样不过现在一般通用的还是0.05级0.01
图形中椭圆表示相关系数.方框表示相关性检验的P值.相关系数越接近于1表示相关性越强、你示范的数据肯定是两组一模一样的数据,所以截图中出现想过系数为1.而检验概率P值为0,这说明完全相关.
在表格里双击一次,再在.000的地方双击一次就能显示具体的用科学计数法表现的数值.E后面的数值X(因为很小,所以是负数)表示10的X次方.
方差齐性检验的f和p值就是看上面一栏方差分析就看下面一栏所以,用哪一个,取决于你要看什么
看Linear-by-LinearAssociationLinear-by-LinearAssociation是指你所分析的列联表(Crosstable)它的行变量(Rowvariable)与列变量都
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
给你举个例子吧2*2的表格那么你就把第一个变量分为1,2两个.第二个变量也分为1,2两个.然后把人数或者其他的它们对应的数字输入到spss第三列,然后把数字加权.2*2的表格就有四种方式.注意数据不要
应该是用重复测量的方差分析来做的
相关啊,但是你做了两种相关检验不要放到一起来说啊,各是各的啊~皮尔森那个双尾检验,相关系数r=0.22,p
如果L1L3的系数不显著的话,可以不必管它,因为相关系数本身就不高0.254和0.236.虽然是两两相关,但是相关系数包含了其他因素的影响,而回归方程中的系数表示控制了其他2个变量的影响后,该变量与因
分数没用的你有什么问题直接说我经常帮别人做这类的数据分析的再问:那我加您,辛苦了,我的问题都挺基础的...
可以将被剔除的变量做回归分析,但如果相关系数过高,可能会产生多重共线性(参数t检验无法通过),到时候可以去剔除法或者SPSS的逐步回归法做就行第一个图是方差分析表,其实意义不需要过多强求,主要看F值对
表2两组患者后情况比较例(%)组别\x05例数\x05疼痛阳性静脉炎实验组\x0540\x050(0%)\x050(0%)对照组\x0540\x0515(6%)4(1.6%)X2值\x05\x0518
我猜想你的F和第一个sig是那个levene检验吧,sig大于待定的数比如0.1或0.05为方差齐,否则为方差不齐.你后面的t,df和sig(双侧)应该分别指:t检验数,自由度,双侧检验的显著性,一般
两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性.