spss极差分析
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 20:47:21
在Analyze下拉菜单的Correlate命令项具有三个相关分析功能子命令它们分别是BivariatePartial和Distance对应于相关分析偏相关分析和距离分析1Bivariate计算指定的
从表中我们可以看到,EDI与EDI的相关系数为1(这是显然的,自己跟自己跟定线性相关),类似的,矩阵对角线位置都是1.其余不相同的两个变量相关系数在-1到1之间,如EDI与HP的相关系数为0.261.
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
第二个表说明拟合度,0.996,接近1,说明模型拟合不错;第三个表看F值就好,相当大,在95%甚至99%置信度下显著;第四个表说明自变量X(营业收入)系数为0.891,并且是在95%甚至99%置信度下
给你举个例子来说明吧左表的数据是对数年来国内旅游者的旅游花费与自由自配收入、闲暇时间的调查数据.(数据是假设的)目的:试进行多重回归分析,求出回归方程式,来年若闲暇时间没有变化,但自由自配收入较之今年
正负号只是表示关系的正负这不影响主成分分析主要看绝对值的大小绝对值大就表示关系强
用SPSS的独立样本T检验,可以两两比较或者使用SPSS中的方差分析,也可以判断这三组是否存在着显著性差异
显著性(双侧)也即P值为0.028
SPSS的相关分析分布在两大块.其一,当两个变量都是连续性变量(应该就是你说的数值变量)时,调用“相关分析”.其二,至少有一个变量是非连续性变量时用描述统计的交叉表,在统计量的选项卡里有多种不同类型的
可以的,f值为8.14,p值小于0.05,说明回归模型是有意义的
设要做二因素的正交设计,A因素有三个水平,B因素有两个水平.则选择Data-->OrthogonalDesign-->generate,弹出的就是正交设计窗口:Factorname框:输入A:单击AD
因为对阁下的题目不了解,所以不知道上图中的结果代表什么含义.你的理解是正确的,主成分分析得到的主成分是一个综合性指标.从数学的运算来看,主成分分析的过程只是在原来的相关系数矩阵上做了一个正交旋转.而降
R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数.你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高
这个聚类分析图的答案可以不止一种情况从最底层看起,1,5,6首先是一类,3,7又是一类,4单独一类再往上一层1,5,6,3,7又可以看做一类,4,单独一类,2单独一类,8单独一类再往上可以看出1,5,
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
这种情况很正常知道吗因为在计算相关系数时,得到相关系数0.21,说明相关性不是很强,但通过检验了,说明在总体中AB也存在这种相关关系而回归分析是,我想你应该是建立一元线性回归吧,但没有通过检验,这种一
①如果你的指标因子中出现了负向指标,即你说的越小越好,那么我建议你不要用SPSS进行标准化,因为SPSS默认的标准化方法是标准差标准化,对负向指标不太合适.你可以手动用excel进行极差标准化,公式为
你少了一个表,输出结果的第一张表就是“输入/移去的变量”,这张表里面就是保留和移除的变量.模型汇总:这个看R方,数值最大最接近1的就是拟合度最好的模型.Anova:这个看Sig,
abcde是一个问题的五个选项?是分类变量还是连续性的变量如果是分类变量需要转变成哑变量才能回归,如果是连续性的变量可以直接纳入回归中另外回归分析要看散点图呈现线性关系可以用线性回归,对因变量要求为连
如果将各年级间的三个水平分别进行差异检验,这样有意义吗?答:好像没有.因为已经证明,总分在年级间没有显著差异.但可以试一试,方法要改变.总分的年级间比较,用方差分析合适.改成三个水平比较,则适用于卡方