spss怎么计算拟合度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:59:37
很少说拟合率,基本上都说拟合优度(专业).拟合优度越接近1,说明拟合效果越好.
要看是什么曲线了啊,系数都是会给你看到的我替别人做这类的数据分析蛮多的再问:嗯,就是一个很简单的散点图,用线性拟合出直线,但是SPSS17.0版本不显示拟合直线的方程,而22.0版本就显示方程,不知道
问题描述:给定数据,1.用双曲线1/y=a+b/x作曲线拟合,2.用指数曲线y=aeb/x作曲线拟合答案1::1.用Compute过程按照y1=1/y,x1=1/x进行转换得到y1和x1,原式y1=a
logistic无需计算拟合优度主要看aic等值我替别人做这类的数据分析蛮多的
建议楼主看下这个模型的定义公式即可再问:不知道spss里面的函数形式是什么logistic有很多种写法不知道它用得哪一种再答:那就具体看下,你的参考范文,或者参考案例之类的,一般会有具体介绍,方程的
这个问题.把数据录入好,点analyze--descriptivestatistics--frequencies,把你要统计占比的变量选过去,点ok即可.结果里,percent对应的就是该数字的百分比
分析->回归->曲线估计因变量 选 专利数自变量 选 时间模型 选 三次勾选 显示ANOVA表格确定.ModelSummarya\x09\x09\x09R RSquare AdjustedRSq
现进行数据分类(试试看聚类分析能否实现),分出2类数据,然后按类别绘制出散点图,再回归.
这个可以成为方程的解释率也可以理解为拟合率吧说明你的方程可以解释82%的变异,拟合度比较好
R2和sig都可以,精度不一样而已.往往可以同时参照这两个,另外还有P值,综合起来考虑.sig为空,说明你的步骤有问题,数据没有计算出来.
1.用Compute过程按照y1=1/y,x1=1/x进行转换得到y1和x1,原式y1=a+bx1,然后用Regression对y1和x1作一般的线性回归即可;2.原理同1,处理方法上先两边取对数,令
就是表示模型拟合的程度logistic回归不是主要依靠这两个指标来衡量模型好坏的我替别人做这类的数据分析蛮多的再问:那时通过什么指标来衡量的呢?
拟合度低问题不大关键是回归模型的检验即这里的sig是否小于0.05,如果是的话,就说明了这个回归模型可以用的,只是你目前这些自变量只能够解释那么多的再问:系数(a)模型非标准化系数标准系数共线性统计量
有点低.你有几个变量再问:四个自变量,两个控制变量,两个因变量。拟合度和变量个数有关系?再答:如果是管理学的实证分析拟合度不是最重要的问题再问:这样啊,我是学管理的,顺便问一下,用spss做回归分析的
做有序回归,不是去看R2,没用的coxandsnell是伪R2,已经不是你理解的R2了我经常帮别人做这类的数据统计分析再问:那应该看哪个呢?可不可以说一下这三个表分别表示什么意思呢?
当然可以按你所说的求解,关键是看你建立的回归模型的意义.还有,从回归原理看,一般认为回归方程要有常数项,这样才能保证回归的有效性.比如,如果没有ones(4,1)这一列,matlab会提示:R-squ
1.用Compute过程按照y1=1/y,x1=1/x进行转换得到y1和x1,原式y1=a+bx1,然后用Regression对y1和x1作一般的线性回归即可;2.原理同1,处理方法上先两边取对数,令
R表示的是拟合优度,它是用来衡量估计的模型对观测值的拟合程度.它的值越F的值是回归方程的显著性检验,表示的是模型中被解释变量与所有解释变量之间
2、各个自变量之间存在共线性问题,冲销了对因变量的影响,建议看单个自变量的T值,把不显著的剔除.然后,逐步回归,看哪个自变量加入后使得整个模型的拟合优度降低.3、只看R²不行,还要看adjR
……线性回归有个更专业的函数的,LinearModelFit,从中可以提取多种参数,当然也包括相关系数:data1={{0.0217,0.0476},{0.0424,0.09559},{0.0627,