spss回归结果显示变量A不显著,但理论上应该是显著地,这是为什么?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:10:32
很简单,用前进、后退或逐步法都行,一般用逐步法然后看整个模型是否有统计学意义,就是有回归和残差那项若有意义(P小于0.05)则继续看每个参数的P值若P值大于0.05,剔除~最后得方程模型当然还需要注意
ModelSummary是对模型拟合效果的总结,R是相关系数,R2是决定系数,系数越大表面拟合效果越好.ANOVA是方差分析,然后F检验Coefficients就是回归结果,得到的回归方程的系数
目测应该是想了解消费者对价格、质量、品牌的敏感度是否会对其消费方式造成影响~所以应该做相关~3个自变量都和因变量做相关~spss里用“分析”-“相关”-“双变量”~把4个变量都放进去~就看因变量所在那
第二个表说明拟合度,0.996,接近1,说明模型拟合不错;第三个表看F值就好,相当大,在95%甚至99%置信度下显著;第四个表说明自变量X(营业收入)系数为0.891,并且是在95%甚至99%置信度下
用SPSS作Logistic回归分析,自变量较多,先用单因素分析对自变量进行筛选,得出回归方程,主要是看各个自变量的假设检验结果,和系数.两个自变量都有统计学
好像没法哦,只能根据标准自己来判断的只有相关分析时会在显著性水平后面加*
你看每个变量的sig值,如果小于0.05,就说明该变量对因变量有显著影响,反之则没显著影响,beta那一列是回归系数,B那一列是标准回归系数.
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
用SPSS进行多元回归以后,系统会自动给出x1、x2和x3(从大到小)的R的平方和,相减就是解释率.
R平方就是拟合优度指标,代表了回归平方和(方差分析表中的0.244)占总平方和(方差分析表中的0.256)的比例,也称为决定系数.你的R平方值为0.951,表示X可以解释95.1%的Y值,拟合优度很高
(1)中F伴随的p值小于0.001,是怎么看出来的?(2)常数在0.005下显著,以及x1在0.001下显著是怎么看出来的?就是看最后一列的sig值,就是P值.它小于显著性水平,比如0.05,就显著.
正相关的话,用相关分析就可以.或者就是在回归分析中看那个系数,系数是正的,并且后面的P值是显著的,不仅说明他们是正相关,还可以说明A的变化会给B带来怎么样的变化
Logisticregression啥时候讨论过R方,只听过近似的Cox系数,一般都是讨论AIC值的,或者看你的Deviance,因为AIC的取值就是Deviance与自由度权衡后得出的值,服从卡方分
一看判定系数R方,本例中,R方=0.202,拟合优度很差.一般要在0.6以上为好.至少也在0.4以上.二看系数估计量的sig值,其中,独董规模的sig=0.007,小于0.05,说明该变量对因变量有显
1)R方=0.552说明存款利率作为自变量可以解释因变量(六个月后涨跌额)55.2%,Durbin-Watson=1.457表示残差自相关不强,①当残差与自变量互为独立时,D=2或DW越接近2,判断无
这是正常现象.在SPSS多元线性逐步回归中,早先已经进入方程的变量可以又被踢出来.多元线性逐步回归要求能留在方程中的变量必须要同时符合2个条件:一是对模型必需要有足够的影响力,二是对不能方程中的其他变
是一个标记,告诉你它代表了你的模型里的常数项和自变量的含义,表格下面写了的
先做散点图吧,数据太少了.散点图很简单,你应该会吧.散点呈嗦形才能进行回归分析.回归分析的具体步骤见图只是回归系数不显著,sig>0.05,拟合度R=0.65还可以.最后回归方程为Y=0.01x
R是自变量与因变量的相关系数,从r=0.378来看,相关性并不密切,是否相关性显著由于缺乏sig值无法判断.Rsquare就是回归分析的决定系数,说明自变量和因变量形成的散点与回归曲线的接近程度,数值
文章和标记有作用,两者不存在交互作用谢谢,有需要数据分析,联系我