SPSS判断相关性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:04:04
*代表p再问:能具体说说表格中每个数字的意思吗?比如表中哪个数字代表P值,哪个数字代表样本量等等再答:。。。。55是样本量,0.003是p,你这完全不懂,还是别自己瞎做再问:那1和0.399呢?
在Analyze下拉菜单的Correlate命令项具有三个相关分析功能子命令它们分别是BivariatePartial和Distance对应于相关分析偏相关分析和距离分析1Bivariate计算指定的
_问题描述:在SPSS中做主成成分分析的时候有一步是指标之间的相关性判定,我想知道具体是怎么进行判定的,他的算法、原理是什么?答案1::说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关
分析—描述统计—交叉表,如上图,选中行变量和列变量后,点统计量,选择“卡方”,继续,确定.结果图看sig值,若小于0.05,说明差异显著.统计人刘得意是否可以解决您的问题?再问:能给我截个图看看吗?我
说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关性越是高,做主成分分析就越是成功.主成分分析是通过降低空间维度来体现所有变量的特征使得样本点分散程度极大,说得直观一点就是寻找多个变量的
用相关性检验就行,a中10中元素作为一组,b中10种元素作为一组,然后a与b做相关检验,相关检验如何做,你可以搜一下,很多检验方式,这里也不好回答,找有图文的,如有不明,可继续提问
在Analyze下拉菜单的Correlate命令项具有三个相关分析功能子命令它们分别是BivariatePartial和Distance对应于相关分析偏相关分析和距离分析1Bivariate计算指定的
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
不相关.一般来说相关性大小要看显著性达到什么程度.显著性越小说明相关程度越高.显著性小于0.05则为显著先关,小于0.01则为极显著相关.大于0.05则说明不相关,或者相关性不强,也可以简单理解为不相
你提供的是不完整的回归分析结果.模型汇总中的R方说明你的回归公式的拟合度很好,也就是说用这个公式模型来进行预测的能力很强.R方在0-1之间,越大说明拟合度越好.R说明两个变量之间为很密切的正相关关系,
你问的是2个问题吧,如果做一元线性回归,就不用检验相关性.下面只是简单说下操作,1、一元线性回归在spss里录入相应数据,自变量x,因变量Y,然后点击:analyze--regression--lin
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.再问:我用的是中文版的SPSS,点击:分析—相关-双变量相关,
显著性(双侧)也即P值为0.028
SPSS的相关分析分布在两大块.其一,当两个变量都是连续性变量(应该就是你说的数值变量)时,调用“相关分析”.其二,至少有一个变量是非连续性变量时用描述统计的交叉表,在统计量的选项卡里有多种不同类型的
可以把所有变量一起做相关吧,analyze-correlate-bivariatecorrelations,把你这五个因素都加入variables,选pearson或者spearman,结果出来有个c
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
主要看“显著性”的值P,当P>0.05时,表示两变量间不相关.故:1与2相关,1与3、4均不相关其余类推.
朋友,你这个数据可采用pearson相关分析就可以,spss的步骤如下:1、单击Analyze——Correlate——Bivariate...,则弹出相关分析BivariateCorrelation
看相关系数,汉语和英语的分数存在显著正相关性,相关系数是0,915再问:�Ǹ��������ġ����ڣ�01ˮƽ��˫�ࣩ������ء�����ʲô��˼������������ô���ij����
可以的哈!只要数据是成对的,样本足够大,也就是满足正态、线性关系就可以用相关分析哈!如计分方式没有关系,如果你存在反向计分,那么可能负相关.这个不再问:现在是统计问卷,不知道如何下手