SPSS分析两变量之间是否存在差异
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:56:10
目测应该是想了解消费者对价格、质量、品牌的敏感度是否会对其消费方式造成影响~所以应该做相关~3个自变量都和因变量做相关~spss里用“分析”-“相关”-“双变量”~把4个变量都放进去~就看因变量所在那
先看问题,根据实际提出假设,小于0.05或0.01,那么否定假设,大于0.05或0.01那么接受假设.如果是T检验的话用2-tailed比较,如果是用SPSS的话就直接用sig.(2-tailed)或
和正态分布没有关系,你的两个变量应该是连续变量,用pearson相关比较合适.spearman相关系数是对顺序变量做的.
是否有统计学意义主要看sig如果这个值小于0.05那么就是相关的,在此基础上看第一列B值,负号代表负相关.你的例子中性别不对因变量产生影响.另外logistic回归中Exp(B)值即为OR
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.
先通过绘制多维散点图,看看各自变量与因变量之间是否存在线性关系,如果有呈线性趋势,则可以进行多元回归分析,进一步通过数据来获取准确的线性关系再问:谢谢哈!那再请问一下啊,怎么用SPSS绘制一个因变量和
t值没有多大意义最重要的是p
正相关的话,用相关分析就可以.或者就是在回归分析中看那个系数,系数是正的,并且后面的P值是显著的,不仅说明他们是正相关,还可以说明A的变化会给B带来怎么样的变化
有的啊,发过来吧我替别人做这类的数据统计分析蛮多的
主要是看变量类型不同类型的分析方法不一样的我经常帮别人做这类的数据分析的
Statistics菜单的Correlate选项->PartialCorrelations过程看看控制var1(自变量)之后,var2(中介变量)与var3(因变量)之间的相关系数(Correlati
t检验是用来说明两组数据是否差异显著的.如果要看相关程度,应用“双变量相关分析”,具体如下:1、Analyze->Correlate->Bivariate;2、选择两变量进入变量框(Variable)
不能用皮尔森相关检验,结果只能说明两变量的相关性,不能推及到有没有相互影响的结论.统计理论与语言都是要求很严谨和精确的,有没有影响可以做回归分析,如果结果是有影响,也只能说是自变量X对因变量Y有影响,
一般统计分时所做的相关是指Pearson相关或者Spearman相关,而Losgistic回归也即多元回归分析是一个更高层次的相关分析,数据要求质量比较高.如果数据用Pearson相关或者Spearm
"A战略在受访者公司的成功执行率"和“B1B2B3三个成本”都是用的5点量表吗?我不太明白你的执行率怎么用5点量表来回答.如果你的所有问题都是用的5点量表,1表示最差,5表示最好,那可以用相关来初步看
analyze---descriptvestatistics---crosstabs---nominal---contingencycoefficient(列联系数C)再问:中文版的,这个看不懂啊。再
回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析.从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和
你这个问题……零售总额与居民收入及总人口都有关系,但是居民收入和总人口之间的关系不是很明确,所以如果确定Y,应该就是零售总额自变量分别是居民收入和总人口,可以用多元线性回归做一下,看看是否通过检验,你
那你分析错误了,操作对吗再问:对的,回归分析得出结果和相关性分析的不一样,这种情况不存在的吗。可以解释吗再答:肯定做错了的,一般不会
统计学——从数据到结论请看这本书,实践性很强,操作每步都有