SPSS分析P值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:37:36
spss分析结果中不是用字母P来表示,而是sig.来表示的
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
理论上来说p值是越小,差异性越显著0.01或0.05是统计学上一般的常用数字但是具体到不同的学科,可能要求不一样不过现在一般通用的还是0.05级0.01
表格中左4列只是均值、中位数.最右1列是差异检验的结果报告:t值是个统计量,利用了两个变量的均值和标准差计算出来的(有公式,spss软件可自动计算出来).比如x1变量上,舞弊和控制两组被试之间得分有无
给你举个例子来说明吧左表的数据是对数年来国内旅游者的旅游花费与自由自配收入、闲暇时间的调查数据.(数据是假设的)目的:试进行多重回归分析,求出回归方程式,来年若闲暇时间没有变化,但自由自配收入较之今年
SPSS做显著测试正态性检验→统计处理的问题_+可以在我的QQ名称来给你做了一些分析和检查.
wald下就为wald值sig.下就为所求的P值
是不是偏相关系数啊
P值大于0.05就是相关不显著,但若是小于0.10,可以说是接近显著;另外相关分析,要看你究竟是证明总体相关为0,还是为某个值,解释有所不同.再问:谢谢您的回答。得出的r=.246,P=0.058,希
这个聚类分析图的答案可以不止一种情况从最底层看起,1,5,6首先是一类,3,7又是一类,4单独一类再往上一层1,5,6,3,7又可以看做一类,4,单独一类,2单独一类,8单独一类再往上可以看出1,5,
P值是拒绝原假设的值回归系数b是通过样本及回归模型通过SPSS计算得出的,是反映当自变量x的变动引起因变量y变动的量回归系数b的检验是t检验当P
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
这种情况很正常知道吗因为在计算相关系数时,得到相关系数0.21,说明相关性不是很强,但通过检验了,说明在总体中AB也存在这种相关关系而回归分析是,我想你应该是建立一元线性回归吧,但没有通过检验,这种一
一般统计分时所做的相关是指Pearson相关或者Spearman相关,而Losgistic回归也即多元回归分析是一个更高层次的相关分析,数据要求质量比较高.如果数据用Pearson相关或者Spearm
①如果你的指标因子中出现了负向指标,即你说的越小越好,那么我建议你不要用SPSS进行标准化,因为SPSS默认的标准化方法是标准差标准化,对负向指标不太合适.你可以手动用excel进行极差标准化,公式为
你少了一个表,输出结果的第一张表就是“输入/移去的变量”,这张表里面就是保留和移除的变量.模型汇总:这个看R方,数值最大最接近1的就是拟合度最好的模型.Anova:这个看Sig,
你是否想检验两组(治疗组、对照组)间的有效性是否有差异吗?
abcde是一个问题的五个选项?是分类变量还是连续性的变量如果是分类变量需要转变成哑变量才能回归,如果是连续性的变量可以直接纳入回归中另外回归分析要看散点图呈现线性关系可以用线性回归,对因变量要求为连
你再用SPSS做回归时,在选择因变量与自变量的那个窗口的右边,有“选项”这个按钮,点进去有选择是0.05还是其他数值,默认的应该是0.05
我猜想你的F和第一个sig是那个levene检验吧,sig大于待定的数比如0.1或0.05为方差齐,否则为方差不齐.你后面的t,df和sig(双侧)应该分别指:t检验数,自由度,双侧检验的显著性,一般