spss二元logit回归中的OR值代表什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:35:10
当然结果不一样的,因为你放入一个自变量系统会认为只有这一个变量在发生影响.当你一次放入多个自变量时,由于多个自变量之间还有一定的相互关联,系统会在综合计算多个变量的影响后得出回归系数.至于你以那个为准
就是系数加上变量这么来写啊,比如0.196VAR00002-0.152VAR00003-.我替别人做这类的数据分析蛮多的
给你举个例子来说明吧左表的数据是对数年来国内旅游者的旅游花费与自由自配收入、闲暇时间的调查数据.(数据是假设的)目的:试进行多重回归分析,求出回归方程式,来年若闲暇时间没有变化,但自由自配收入较之今年
你的变量明显太多了.变量太多会起到混淆作用,而且如果有分类变量,设置成虚拟变量拟合效果会更好.你看看你的伪r方表是不是也很糟糕?是的话就是你的模型很坏呗.ppv课,大数据培训网站,免费的spss学习视
要大于等于三个水平的分类变量才有必要生成哑变量的,只有两个水平的话不用.logi回归的因变量就是只能俩水平:0和1的.我一般生成哑变量是直接conpute的.简单说分类指的是一个变量在测量中的属性,就
SPSS(StatisticalProductandServiceSolutions),“统计产品与服务解决方案”软件.最初软件全称为“社会科学统计软件包”(SolutionsStatisticalP
是否有统计学意义主要看sig如果这个值小于0.05那么就是相关的,在此基础上看第一列B值,负号代表负相关.你的例子中性别不对因变量产生影响.另外logistic回归中Exp(B)值即为OR
...你做的是Logistic回归...这和一般的二元线性回归是有差异的Logistic回归是针对因变量是定类变量设计的你这个数据根本不适合要求定类变量的意思就是这一问题的回答只具有分类意义,如性别只
相关分析表(Correlations)表明两个变量的线性相关性较强(r=0.601)较显著(p=0.000):提示两个变量之间在较大的程度上可以进行直线回归.Modelsummary表显示线性回归的决
这种情况很正常知道吗因为在计算相关系数时,得到相关系数0.21,说明相关性不是很强,但通过检验了,说明在总体中AB也存在这种相关关系而回归分析是,我想你应该是建立一元线性回归吧,但没有通过检验,这种一
logit回归的结果一般不去太在意方程.数据发我,我看看再问:大哥(姐),做财务预警模型要有ST公司,我想问一下找得到30或35家2010年被首次ST的公司吗?
一个模型是加入了那些不显著变量的,一个是没有加入不显著变量的,两个模型的残差做差,然后除以自由度,就可以算出来score了.再问:变量为x、y、z、m、n、q,m显著性p值最小,先进入方程,如图,然后
也就是说你用几个维度的平均分作为因变量,然后再用这几个维度的得分作为自变量?这样求的回归自然是r=1了,r=1说明自变量与因变量呈完全的线性关系.这就好比用自己解释自己,完全没有意义再问:你说的我明白
可以的.把P取对数后作为新的因变量,就成为线性的了.可以直接估计.
分数没用的你有什么问题直接说我经常帮别人做这类的数据分析的再问:那我加您,辛苦了,我的问题都挺基础的...
abcde是一个问题的五个选项?是分类变量还是连续性的变量如果是分类变量需要转变成哑变量才能回归,如果是连续性的变量可以直接纳入回归中另外回归分析要看散点图呈现线性关系可以用线性回归,对因变量要求为连
如果要弄清楚原理,可以看格林或平狄克的计量经济学,上面有比较详细的讲解.另外,向你推荐一本不错的书:王济川、郭志刚,Logistic回归模型——方法与应用,北京:高等教育出版社,2001.浏览一下这三
给个邮箱再问:929451106@qq.com再答:已发,看懂了吗再问:太复杂了再答:你用的是中文版还是英文版??再问:中文版的,不过我们要解决的问题好像和你给的那个有区别再答:主要是什么问题?再问:
你选择的因变量是不是只用一个值,要么都是1,要么都是0,你检查下
这个指的是回归中的拟合模型整体显著、也就是说回归中设的自变量是有预测作用的.但二元回归的话,2个自变量(预测变量),如果要看它们各自的作用是否显著,还需看各自的B或beta值.