spss中Pearson 相关性是什么意思
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:22:21
_问题描述:在SPSS中做主成成分分析的时候有一步是指标之间的相关性判定,我想知道具体是怎么进行判定的,他的算法、原理是什么?答案1::说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关
分析—描述统计—交叉表,如上图,选中行变量和列变量后,点统计量,选择“卡方”,继续,确定.结果图看sig值,若小于0.05,说明差异显著.统计人刘得意是否可以解决您的问题?再问:能给我截个图看看吗?我
说判定有些严格,其实就是观察一下各个指标的相关程度.一般来说相关性越是高,做主成分分析就越是成功.主成分分析是通过降低空间维度来体现所有变量的特征使得样本点分散程度极大,说得直观一点就是寻找多个变量的
在Analyze下拉菜单的Correlate命令项具有三个相关分析功能子命令它们分别是BivariatePartial和Distance对应于相关分析偏相关分析和距离分析1Bivariate计算指定的
pearson相关性分析的条件是两个变量之间呈线性的相关趋势,此时的相关系数大小会比较准确至于两个变量是否相互影响都没关系另外相关分析只能说明两者之间的互相关系,并不能说明因果关系
一般带一个星号的是水平0.05,两个星号的是0.01,没有星号的不显著
一般直接看相关系数和显著性双侧.你这个一列一列的看要方便些,比如第一列,表示为x1和其他各变量之间的相关性,x1和x2的相关系数为-.022,显著性双侧为0.972,说明这两个变量间无相关性,依次类推
不相关.一般来说相关性大小要看显著性达到什么程度.显著性越小说明相关程度越高.显著性小于0.05则为显著先关,小于0.01则为极显著相关.大于0.05则说明不相关,或者相关性不强,也可以简单理解为不相
首先建立两个变量如x,y,把数据录入进去(两列),在analysis里头,选correlate,分别把x,y放进去,点OK就可以得到结果.再问:我用的是中文版的SPSS,点击:分析—相关-双变量相关,
看Linear-by-LinearAssociationLinear-by-LinearAssociation是指你所分析的列联表(Crosstable)它的行变量(Rowvariable)与列变量都
显著性(双侧)也即P值为0.028
SPSS的相关分析分布在两大块.其一,当两个变量都是连续性变量(应该就是你说的数值变量)时,调用“相关分析”.其二,至少有一个变量是非连续性变量时用描述统计的交叉表,在统计量的选项卡里有多种不同类型的
pearson系数为负且绝对值接近1,说明两个变量负相关,Sig.(2-tailed)是显著性检验,判断样本与我们对总体所做的假设之间的差异是纯属机会变异,还是由我们所做的假设与总体真实情况之间不一致
“员工缺勤率”下面有两个分支问题(变量)你可以采取下列两种方法来处理1、你可以将员工缺勤率下面的两个分支变量合并成一个,譬如,假如你把员工缺勤率分为员工迟到次数和员工早退次数的话,你就可以把这两个加起
可以需要将分段0-500元、501-1000..这样几个选项,分别命名为定类的变量,然后在分析》相关分析》两个变量相关分析
**代表显著性P值或者说sig值小于0.01,就是说你得出变量间相关显著的结论犯错误的可能性是1%,也就是很有把握认定所求相关是具有统计学上的意义的.类似的道理,*代表sig值小于0.05,***代表
不是是卡方检验在分析——列连分析先设置三个变量,再对人数变量加权,加权之后才能进行卡方检验,不知道你明白了没有
两个值都要看,r值表示在样本中变量间的相关系数,表示相关性的大小;p值是检验值,是检验两变量在样本来自的总体中是否存在和样本一样的相关性.
显著的负相关性再问:为什么显著相关,请分析一下。。不是相关系数越接近于1或-1,相关度越强,相关系数越接近于0,相关度越弱么。再答: