齐次方程的基础解系

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:15:51
齐次方程的基础解系
求下列齐次线性方程组的通解,并求出基础解系.

X1+X2+X3+X4=0,2X1+3X2+X3+X4=0,4X1+5X2+3X2+3X4=0x2=x3+x4x1=-2x3-2x4x3,x4,任意取值

求三元齐次线性方程组的基础解系,

x1+x2=0,x2-x3=0则x1=-x2x3=x2则x2=t时,x1=-t,x3=t所以基础解系为:(-1,1,1)

已知n1,n2,n3为齐次线性方程组AX=0的基础解系

(n1+2n2,kn1-4n2+kn3,n1+2n2-n3)=(n1,n2,n3)KK=1k12-420k-1|K|=2k+4所以k≠-2时,向量组...也是基础解系

线性代数问题 为什么齐次线性方程组的基础解系线性无关

这个有理论定义的再问:不是证明出来的?再答:有证明,但不要求我们掌握

齐次线性方程组的基础解系,如何对自由未知量赋值

对,当做到最后一步,有了自由变量后,赋值时有无穷赋值方式.你说得是常见的赋值方式,图上给出的是根据表达式的特点,能得到整数的基础解系对应的赋值方式.对自由变量赋值,只要赋值时是线性无关的向量就可以,比

齐次线性方程组的基础解系是什么?

齐次线性方程组的基础解系就是用K*ak是任意数a是齐次方程组的解向量k1a1+k2a2.+kar.a1和a2和ar必须线性无关是一个齐次方程组的最大无关组而a的个数等于齐次方程组未知数的个数减去齐次方

求解齐次线性方程组的基础解系

这个一般是自由未知量取x3,x4,分别取0,1和1,0得基础解系(-1,1,0,1),(0,0,1,0)

线性代数中,已知基础解系,怎么反推出满足该解系的齐次方程?

把基础解系当做方程组的系数,再把新求出来的解系当做齐次方程的系数就可以了

请问如何用基础解系求得齐次方程组?

求出齐次线性方程组x1+x2-x4=02x2+x3+x4=0的基础解系:(1,-1,2,0)^T,(3,-1,0,2)^T则所求齐次线性方程组为:x1-x2+2x3=03x1-x2+2x4=0

求线性代数齐次方程组的基础解系,如图,

视x1,x2,...,xn-1为自由未知量,得基础解系(1,0,0,...,0,-n)(0,1,0,...,0,1-n)(0,0,1,...,0,2-n).(0,0,0,...,1,-2)再问:(1,

求下列齐次线性方程组的一个基础解系

齐次线性方程组只需考虑系数矩阵,因为增广矩阵的最后一列都是0.解:系数矩阵=1-24-721-213-12-4r2-2r1,r3-3r11-24-705-101505-1017r3-r2,r2*(1/

求下列齐次线性方程组的基础解系

系数矩阵A=1-23-401-11130-31-43-2r3-r1,r4-r11-23-401-1105-310-202r1+2r2,r3-5r2,r4+2r2101-201-11002-400-24

求下列齐次线性方程组的基础解系:

点击[http://pinyin.cn/1bSzi81b4Oz]查看这张图片.

求下列齐次线性方程组的基础解系?

(2)解: 系数矩阵 A=124-3356-445-233824-19r2-3r1,r3-4r1,r4-3r1124-30-1-650-3-18150212-10r1+2r2,r3-3r2,r4+2r

求下列齐次线性方程组的基础解系,

A=1-8102245-1386-2-->r2-2r1,r3-3r11-8102020-15-5032-24-8r2*(-1/5),r3*(-1/8)1-81020-4310-431r1-2r2,r3

齐次线性方程组的基础解系有2个向量,试求方程的通解

基础解系有2个向量,可以得出它的秩是1,再问:秩等于1?不太明白呢,能解释一下吗?知道秩之后我还是不会做。。。原谅我的笨。。。

求非齐次线性方程组的一个解以及对应的齐次方程组的基础解系

增广矩阵=124-31356-4245-2313824-195r2-3r1,r3-4r1,r4-3r1124-310-1-65-10-3-1815-30212-102r1+2r2,r3-3r2,r4+

求方程组对应齐次的基础解系

你的答案是正确的,由标准答案给出的两个基础解析可以得到你的解标准答案中ξ2×2-ξ1的得数就是你的ξ2基础解析只要能表示解空间的所有解就行,你和标准答案都是正确的!再问:懂了,谢谢。另外关于矩阵秩的证

齐次线性方程组的基础解系的自由变量问题

这里用到了Cramer法则若x4,x5为自由变量,当它们任取一组数代入方程组后,不能唯一地确定其余变量.事实上,自由变量是A的列向量组的一个极大无关组所在列对应的变量以外的变量此时,当自由变量任取一组

齐次线性方程组基础解系

证明:因为η1,η2,η3是齐次线性方程组Ax=0的基础解系所以η1+η2,η2+η3,η3+η1是Ax=0的解.所以只需证明η1+η2,η2+η3,η3+η1线性无关即可.因为(η1+η2,η2+η