黎曼提出被积函数不连续,其定积分也可能存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 10:10:44
找一个不收敛的Cauchy序列的例子就行了,这里“不收敛”的意思是在Riemann可积函数这个子空间内没有极限比如说,取一个[0,1]上广义Riemann可积的函数f(x)=lnx,然后定义序列{f_
见图再问:这上面说在无理数点处是连续的,但是在每一个无理数点处,我都可以找一个以这个无理数为极限的有理数列和一个以这个无理数列为极限的无理数列,但由无理数列的函数值构成的数列的极限是0,但由有理数列的
-|f(t)|《f(t)《|f(t)|两边积分:-∫|f(t)|dt《∫f(t)dt《∫|f(t)|dt即:|∫f(t)dt|《∫|f(t)|dt
函数0的不定积分是C.函数0的定积分=C-C=0和积分上下限无关.
证明:f(x)黎曼可积,则[a,b]中不连续点为一零测集,记为A,于是[a,b]-A中均为连续点,x∈[a,b]-A为连续点,即证存在点x∈【a,b】,f(x)在该点连续.回答的不详细,欢迎追问,希望
(∫f(x)g(x)dx)^2=0因此展开得:∫[f(x)^2+2tf(x)g(x)+t^2g(x)^2]dx>=0则:t^2∫g(x)^2dx+2t∫f(x)g(x)dx+∫[f(x)^2dx>=0
1/2ln(1+x²)|(0,1)=1/2ln21/2(lnx)²|(1,2)=1/2(ln2)²再问:有没有有过程啊、、再答:1.原式=1/2∫(0,1)1/ln(1+
http://zhidao.baidu.com/question/347565347.html;http://wenku.baidu.com/link?url=oLG2LivpTjYOWH9Cdnfy
这样证明按照定义肯定是对的,但应该比较麻烦吧……一般如果要证明一个函数黎曼可积引入函数区间上的振幅概念(就是一个区间上面最大值减去最小值),然后用达布理论,黎曼可积转化为几个等价条件,比如任给一个δ>
有理数点是不连续点,并且是第一类间断点.先给个命题:对任意的x0∈[0,1],成立lim(x→x0)R(x)=0(当x=0,1时,考虑单侧极限).【证】对于任意的ε>0,不妨设εε的p至多有有限个,即
不能啊,举两个特例,1.如果被积函数是个极限值为无穷大的函数.2如果被积函数是个常值函数.再问:常值函数如对2积分积分后为2x对应的积分区域分别为(1,2)和(3,6)得到积分值为2和62<6这不是可
这是书上定理:f(x)在[a,b]上有界且只有有限个间断点,则f(x)在[a,b]上可积
被积函数连续,它的不定积分(任意一个原函数)必然连续,事实上原函数是可导的,并且导数就是被积函数,不是吗?
既然你知道类Cantor集,其实不难构造这个反例.设E是包含于[0,1]并具有正测度的类Cantor集,取f(x)为E的特征函数.显然f(x)有界,可测,Lebesgue可积.由E没有内点,易见E中的
1.如果f可积,那么因为在一个周期上,所以f^2可积.另外对于f,bn=1/sqrt(n),于是有∑bn^2发散,而由parseval等式可知这是不可能的.2.1)级数正规收敛,所以一致收敛,所以函数
请问这是个什么问题
黎曼函数:当X在[0,1]区间时,当X=P/Q时(P/Q为既约真分数),R(X)=1/Q;当X=0或1时,R(X)=0.黎曼函数是黎曼构造的一个特殊函数,在很多情况下可以作为反例来验证某些函数方面的待
把积分区间分段,在每一个区间上都满足牛莱公式,那么由积分区域的可加性就可以证明了再问:话虽如此,但是表述起来觉得很困难的啊……再答:先做分点,保证每一个分割区间长度足够小(至少不会出现断点),可以保证
对任意的e>0,函数值>e的点只有有限个(1/q>e等价于q