sinπ n^2 k的级数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 15:10:59
sinπ n^2 k的级数
如何判断级数 ∑1/[n*sin(n)]的敛散性?

数学问题不易从表面判断难度,自己想的题搞不好就和世界难题相关.好在你这道题目本身还算简单.由1/π是无理数,可用抽屉原理证明:存在无穷多组正整数m,n,满足|n/π-m|对满足上述要求的n,可知:|n

判断级数 ∑ (sin n)/n^2的敛散性

很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛

matlab高手,请求函数项级数(-1)^n*sin(pi/2^n*x^n)的连加的和函数

symsnx;symsum((-1)^n*sin(pi/2^n*x^n),n,1,inf)结果:ans=sum((-1)^n*sin(pi/(2^n)*x^n),n=1..Inf)

级数∑n=1到∞ (根号下n)*sin(1/n^2)的敛散性

收敛,因为当n充分大的时候,sin(1/n^2)

级数(1/n)-sin(1/n)的敛散性如何证明

这个显然是正项级数求极限n→∞lim(1/n-sin(1/n))/(1/n³)=1/6≠0所以,原级数和1/n³有想同敛散性所以原级数收敛

判别级数∑(1/(n∧2-n+1))×(sin∧2(nπ)/6)的敛散性

|(1/(n∧2-n+1))×(sin∧2(nπ)/6)|《1/(n∧2-n+1)由于lim[1/(n∧2-n+1)]/(1/n^2)=limn^2/(n^2-n+1)=1所以级数1/(n^2-n+1

利用比较审敛法判定级数[∞ ∑ n=1] sin[π /(2^n)]的敛散性

因为当n趋于无穷时,π/2^n趋于0所以根据等价无穷小的代换:sint〜t(t—>0),有sin[π/(2^n)]〜π/(2^n)(n—>无穷)所以[∞∑n=1]sin[π

级数(1/n) × sin(πn/2)的敛散性

该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/

用比较判别法判定级数sin(π/2^n)的收敛性

再问:为什么?能给详细步骤不?再答:你说的是这个极限的求法啊????再问:我极限很差,为什么它的极限等于π啊?

判别级数∑(n=1,∝) 2^n sin(π/3^n) 的敛散性

∑(n=1,∝)2^nsin(π/3^n)当n趋于无穷大时sin(π/3^n)~π/3^n所以∑(n=1,∝)2^nsin(π/3^n)与∑(n=1,∝)2^n(π/3^n)=∑(n=1,∝)π(2/

如题,判断数列sin (n^2)的敛散性,注意不是级数.

假设(sin(n^2))收敛于A那么又因为∫[0,+inf]costdt=lim[n-->+inf]∫(1,(n+1)^2)cos(t)dt=lim[n-->+inf]∑[1,n]∫[i^2,(i+1

级数从1到∞ Σ[1/ln(n+2)]*sin(1/n) 判断该级数的敛散性

sin(1/n)~1/n原级数化为1/nln(n+2)这是一个重要的级数有级数从2到∞Σ1/n^p(lnn)^q有p>1或p=1且q>1是收敛p

级数收敛性之sin(1/n)>(2/π)×(1/n)

sinx-2/Pi*x这个函数,在0和Pi/2都等于0,并且在这个区间上是凹函数,所以大于等于0.

讨论级数sin(nπ/4)/n^2 n从1趋向于无穷大的绝对收敛性与条件收敛性

级数通项绝对值小于等于1/n^2,所以绝对收敛.

级数sin(n+1/n)π的收敛性

sin(n+1/n)π=sin(π+π/n)=-sin(π/n)即只需要判断-sin(π/n)的收敛性而limsinx/x=1【x趋向于0时,在这里就是sin(π/n)与(π/n)的极限是1,即是同阶