sin²xcos²x分之一的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:20:03
最小正周期:T=圆周率(pi),最大值=13/8,最小值=-3/8.
f(x)=sin^4x+cos^4x+sin^2xcos^2x/2-2sinxcosx=(sin²x+cos²x)²-3sin²xcos²x/2-2s
y=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=sin^2(2x)/2=(1-cos4x)/4周期显然是pi/2
y=sin^4x+cos^4x+4sin^2xcos^2x-1=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=si
∵[xcos(x+y)+sin(x+y)]dx+xcos(x+y)dy=0==>xcos(x+y)dx+xcos(x+y)dy+sin(x+y)dx=0==>xcos(x+y)(dx+dy)+sin(
合并同类项么,很简单的只要你愿意去做左边=cos*x(cos*y+sin*y)+sin*x(cos*y+sin*y)=cos*x+sin*x=1=右边
用基本不等式sin^2xcos^2x+2/sin^2xcos^2x-2≥2√2-2公式没有错,但是等号无法成立,若成立,则sin²x*cos²x=√2但是sin²x*co
原式=∫4dx/(2sinxcosx)²=4∫dx/sin²2x=2∫csc²2xd2x=-2cot2x+C
利用半角公式如图降次计算.经济数学团队帮你解答,请及时采纳.
intln(tanx)/(sinxcosx)dx=intln(tanx)*cosx/sinx*1/cos^2xdx=intln(tanx)*1/tanxd(tanx)=intln(tanx)d[ln(
y=sin⁴3xcos³4xdy/dx=cos³4x*d(sin⁴3x)/dx+sin⁴3x*d(cos³4x)/dx=cos
f(x)=[(sin^2x+cos^2x)^2-sin^2xcos^2x]/(2-2sinxcosx)=(1-sinxcosx)(1+sinxcosx)/2(1-sinxcosx)=1/2sinxco
t=sinx+cosx=√2sin(x+π/4)-√2=再问:上面那个颠倒的V是什么再答:那是根号呀,√2表示根号2.再问:sin^2x这个颠倒的^也是根号?再答:这个是次方符号呀,sin^2x表示的
y=(sin^2x+cos^2x)^2+2sin^2xcos^2x-1=1+2sin^2xcos^2x-1=2sin^2xcos^2x=sin^2(2x)/2=(1-cos4x)/4周期显然是pi/2
∫e^sinx(xcosx-sinx/cosx^2)dx=∫e^xsinx*xcosxdx-∫e^sinxsinxdx/(cosx)^2=∫xe^sinxdsinx-∫e^sinxd(1/cosx)=
∫(1/sin²xcos²x)dx=∫(sin2x+cos2x/sin²xcos²x)dx=∫(1/sin²x+1/cos²x)dx=-co
sin^4x-sin^2xcos^2x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x=(sin^2x+cos^2x)^2-3sin^2xcos^2x
1/[(sinx)^3(cosx)^3]=[sinx/(cosx)^3]+(2/sinxcosx)+[cosx/(sinx)^3]∫(1/sin³xcos³x)dx=[(1/2)/
∫sin^2xcos^3xdx=∫sin^2x(1-sin^2x)dsinx=∫sin^2x-sin^4xdx=(1/3)sin^3x-(1/5)sin^5x+C不是让你求助我吗.再问:∫sin^2x