sin^4tdt积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:56:46
1如图,有不清楚请追问.请及时评价.
不定积分:1.题似乎没写对,∫e^(5t)dt=(1/5)e^(5t)+C2.(-1/2)[(2-3x)^(2/3)]+C3.-2cos√t+C4.(-1/2)e^(-x^2)+C5.(-1/4)[(
见图,我觉得应该是对的,你自己再看看过程哈,我敢保证方法是对的
可以这样考虑,设∫e^√tdt=F(t),于是在x^2-x^3之间的定积分=F(x^3)-F(x^2)再对x求导=F'(x^3)*3x^2-F'(x^2)*2x=3x^2*e^√x^3-2x*e^√x
求定积分【0,x】∫arctan(√t)dt原式=【0,x】[tarctan(√t)-(1/2)∫(√t)dt/(1+t)]=xarctan√x-【0,x】(1/2)∫(√t)dt/(1+t)].设√
1dy/dx+5y=-4e^(-3x)dy/dx+5y=0dy/y=-5dxln|y|=-5x+lnCy=Ce^(-5x)设y=C(x)e^(-5x)y'=C'(x)e^(-5x)+C(x)*(-5)
要变换积分次序.你把积分区域画一下,然后先x后t进行积分.
定积分就是将:上限的值带入不定积分减去下限的值带入不定积分(2个相同的常数C相互抵消了).
∫(sinx→0)sin^2tdt=1/2-1/4sin2xlim(x→0)∫(sinx→0)sin^2tdt/x^3=lim(x→0)(1/2-1/4sin2x)/x^3=lim(x→0)(1/2-
那就先求积分,后求导数吧d/dx∫(sin²t)dt=d/dx(1/2)∫(1-cos2t)dt=d/dx(1/2)[∫dt-(1/2)∫cos2td(2t)]=d/dx(1/2)[t-(1
用部分积分公式:令t=u,e^t=v.则:∫t*e^tdt=∫udv=uv-∫vdu=t*e^t-∫e^tdt=t*e^t-e^t+C
=-∫(0,1)dx∫(x^2,1)xsint/tdt=-∫(0,1)dt∫(0,t^1/2)xsint/tdx=-1/2cost|(0,1)=1/2(cos1-1)
[(sinx-cosx)/(sinx+cosx)]^4=[(1-tgx)/(1+tgx)]^4=[tg(x-45)}^4=[sec^2(x-45)-1]^2由此再求,上面两答案都不对
∫dt/√t=2∫d√t=c+2√t
证明这个函数的在整个定义域内连续,可导,可积省略.下面证明∫sint/tdt=π/2(积分上限为∞,下限为0)因为sint/t不存在初等函数的原函数,所以下面引入一个“收敛因子”e^(-xt)(x>=
设y=∫(上限x,下限0)(t²-x²)sintdt=∫(上限x,下限0)t²*sintdt-x²*∫(上限x,下限0)sintdt那么对x求导得到y'=x
∫(sinx)³/(cosx)^4dx=-∫(sinx)²/(cosx)^4d(cosx)=-∫(1-cos²x)/(cosx)^4d(cosx)=-∫1/(cosx)^
一定是我打开的方式不对,这积分号里是常数啊.这不用问了
第一个是tan^3xsecxdx(sec^2x-1)tanxsecxdxsec^2x-1dsecx积分结果是sec^3x/3-x+c第二个同样方法cot^4x/cscxdx(cscx^2-1)^2/c