sinx*sin1 x的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 18:28:42
x→0,sinx~x,sin³x~x³,1-cosx~x²/2∴lim(x→0)(tanx-sinx)/sinx³=lim(x→0)x(1/cosx-1)/x&
存在.从左边趋近于0的时候,极限为-1从右边趋近于0的时候,极限为+1可以从弧度的定义出发来证明这个结论
上下除以x=lim(1-sinx/x)/(1+sinx/x)sinx//x极限是1所以极限=(1-1)/(1+1)=0上下除以sinx原式=lim(1/cosx-1)/sin²x=lim(1
楼主的对这部分的想法混淆得太厉害,真是剪不断,理还乱.我也不是老师也不知道给你从何说起,就一个问题一个问题的来吧.第一题:lim(x+sinx)/x(x→∞)=lim(1+sinx/x)=1+lims
=lim(1/cosx-1)/(sinx)^2=lim(1-cosx)/(sinx)^2cosx=lim2(sin(x/2))^2/(sinx)^2=(1/2)lim[(sin(x/2))^2/(x/
当x->0时,f(x)=sinx/x的极限是1.当x->0时,1/f(x)中分子分母的极限都存在,等于1/limf(x)=1/1=1
lim(x→0)(tanx-sinx)/(sinx*sinx*sinx)=lim(x→0)(1/cosx-1)/(sinx*sinx)=lim(x→0)(1-cosx)/(cosx*sinx*sinx
依题它是趋向于0.又式子是0/0型,所以原式=(1-cosx)/(1+cosx)=(x²/2)/2=x/2=0再问:������再答:哪里看不懂再问:�ǵ�1-cosx���Dz�再答:x趋于
这类型的极限计算通常都用洛必达法则,但在求导方面也很棘手,过程非常繁复,很容易会计算错误.原式=1/6
lim(x-->90°)[(sinx)^3-2(sinx)^2+1]/[sinx-1](0/0型,用洛必达法则)=lim(x-->90°)[3cosx(sinx)^2-4cosx*sinx]/cosx
【x->∞0≤|sinx/x|≤1/|x|-->0,0≤|cosx/x|≤1/|x|-->0故:sinx/x,cosx/x为无穷小量.】lim(x->∞)(x+sinx)/(x+cosx)=lim(x
可以分子为有界(限?)量,分母为无限量,分式为0
方法一求极限x➔0lim[(tanx-sinx)/sin³x]=lim(1/cosx-1)/(sinx)^2=lim(1-cosx)/(sinx)^2cosx=lim2(sin
取对数ln(sinx)^x=xlnsinx=lnsinx/(1/x)罗比达法则=cosx/sinx/(-1/x²)=-x²cosx/sinx=【-2xcosx+x²sin
方法一:0/0型极限,用L'Hospital法则lim(x→0)sin²x/(1-cosx+sinx)=lim(x→0)(sin²x)'/(1-cosx+sinx)'=lim(x→
可设y=x^sinx.两边取对数得,lny=sinx*lnx.(1).易知,当x--->0时,sinx*lnx为0*∞型,由洛必达法则,sinx*lnx=(lnx)/[1/sinx]=(1/x)/[-
取对数ln原式=lim(x→0)sinxln(tanx)=lim(x→0)ln(tanx)/(1/sinx)=lim(x→0)(1/tanx*1/cos^2(x))/(-1/sin^2(x)*cosx
先求导:得(1-cosX)/(1+cosX),最后结果0
极限不存在,也不是无穷大