sinx 泰勒 公式 误差估计

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:32:01
sinx 泰勒 公式 误差估计
应用3阶泰勒公式求下列各数的近似值,并估计误差.(1)30的三分之一次方 希望对于如何求误差能够详细些

再问:请问你的qq号是多少啊?再答:sorry,qq好几年没有用了这题帮忙选为满意回答

应用三阶泰勒公式求根号30的近似值,并估计误差

三阶泰勒公式(1+x)^(1/2)=1+1/2x-1/2*4x^2+1*3/2*4*6x^3所以30^1/2=(1+29)^(1/2)30^1/2~=1+1/2*29-1/2*4*29+...~=约等

关于泰勒公式展开sinx的误差估计

我是这样理解的书上设的是2m.说明最终的展开式有偶数项,也就是说,余项一定为奇数阶,注意,一定是啊~对于m=1时f(x)=f'(0)+f'(0)x+f''(0)x+R2(x),四项对于这个题目楼主把植

应用三阶泰勒公式求30的三分之一次方的近似值,并估计误差!

30=27+3,在x=27这一点展开就是再问:还是不懂再问:麻烦您写一下整个步骤再答:

泰勒公式怎么用?比如sinx

对于函数来说,多项式是最简单得表达形式,泰勒就是将函数用多项式表示!

应用三次泰勒多项式计算sin9度近似值,并估计误差

9degree=9/180^pi=pi/20sin(pi/20)pi/20-1/6*(pi/20)^3+o(x^3)误差约为1/5!*x^51/120*(pi/20)^5

关于用泰勒公式求误差的问题?

ε取的是0到1/9中的一个数,具体要根据你的展开到第几项来确定,一般来说不用明确写出,只要大概知道在那个范围就可以了.这里由于(1+ε)接近于1,所以(1+ε)^(1/3-4)等于1.

用3阶泰勒公式求 30^(1/3)的近似值,并估计其误差.

(30)^(1/3)=(3^3+3)^(1/3)=3*(1+1/9)^(1/3)再答:求采纳再问:真不知道哪像泰勒展开式。再问:那40^(1/3)呢再问:不过谢谢你,我知道刚才为什么没做出来了,忽略了

应用三次泰勒多项式计算e的二分之一次方的近似值,并估计误差

利用e的x次方的泰勒展开式 将x=1/2代入 过程如下图: 再问:Good#^_^#多谢啦再答:给个采纳吧,谢谢了再问:再问:答案不是这个诶●︿●习题3-3第五题第二个小

泰勒公式展开sin(0.3) 的误差估计

没有错啊sin(0.3)=0.29552020666133957510532074568503你做的结果是0.29547975误差很小了要注意,用WINDOWS的计算器计算时,选择弧度,不是角度,估计

应用3阶泰勒公式求下列各数的近似值,并估计误差.(1)30的三分之一次方(2)sin18度

(1)(30)^1/3=(27+3)^1/3=[27(1+1/9)]^1/3=3(1+1/9)^1/3下面就可以用近似公式(1+x)^n≈1+x/n继续进行计算.误差也可用公式估计(见《高等数学》级数

利用泰勒公式取n=3,求ln1.2的近似值,并估计其误差

lnx=ln1+1/1*(x-1)+(-1/1^2)/2*(x-1)^2+2/6*(x-1)^3x=1.2代入计算即可.ln1.2=0+0.2-0.5*0.04+1/3*0.008≈0.1827再问:

用三阶泰勒公式 sin18°的近似值 并估计误差

用三阶泰勒公式sin18°的近似值并估计误差18°=18π/180=0.314159265sin18°≈0.314159265-0.314159265³/6=0.314159265-0.00

泰勒公式怎样求sinx

在X0的泰勒展开公式,书上公式.你的问题在怎么处理它只有奇数项不为零0?换成2n-1就好,但是注意开始项是n=1还是n=0.不能在0点展开,那是麦克劳林展开.

用3阶泰勒公式求sin18°的近似值并估计误差

sinx=x^5/120-x^3/6+xx=18°=pi/10;sin18°的近似值=x^5/120-x^3/6+x=0.309016994374947sin18°的真值=0.309016994374

请教泰勒公式展开cosX和sinX

sinx=x-x^3/3!+x^5/5!+o(x^5),o(x^5)换成o(x^6)也可以.一般的写法是写成前面泰勒多项式最后一项的高阶无穷小,对sinx来说,一般写成o(x^5)就行了.逐项求导后就

泰勒公式误差 有时候不一样

因为展开到5阶和展开到6阶,展开式是一样的.你的理解是对的.再问:还有请问,如ex2(E的X平方)展开成了1+x2+x4/2!+x6/3!+o(x7)或者o(x6)怎么这里也可以是这样呢。是不是从套用

应用3阶泰勒公式求下列各数的近似值,并估计误差.(1)30的三分之一次方.

在泰勒公式里,x的适合范围是-1越接近两个边缘多项式的值自然和原式计算的值相差的较大.试把x值放接近0,答案会比较准确.再问:好像同济版六上面没说x的范围啊,只是提供误差计算范围。但是展开后多项式的值