高等数学积分1 (1 cosx) dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 17:18:12
高等数学积分1 (1 cosx) dx
求积分(1+sinx)/[sinx*(1+cosx)]dx

∫{(1+sinx)/[sinx(1+cosx)]}dx=∫{1/[sinx(1+cosx)]}dx+∫[1/(1+cosx)]dx=∫{sinx/[(six)^2(1+cosx)]}dx+(1/2)

求积分:∫(x+sinx)/(1+cosx)dx

把原式分母用1+cosx化为2cos^2(x/2)得x/[2cos^2(x/2)]和tan(x/2)的两项积分第一项化成(1/2)xsec^2(x/2)dx=(1/2)[xdtan(x/2)]用分部积

不定积分试题:这是积分(x+sinx)/(1+cosx)dx

∫(x+sinx)/(1+cosx)dx=∫xdx/(1+cosx)+∫sinxdx/(1+cosx)=∫xd(x/2)/[cos(x/2)]^2+∫tan(x/2)dx=∫xdtan(x/2)+∫t

积分(0,pie) xsinx/(1+(cosx)^2) dx

letf(x)=xsinx/(1+(cosx)^2f(-x)=f(x)ief(x)isevenfunction∫(0,π)xsinx/(1+(cosx)^2)dx=∫(-π,0)xsinx/(1+(c

高等数学定积分计算为什么最后那一项0~1定积分了再定积分还是一样的呢?

最后那一项0~1定积分相当于一个常数C也就是对C在0~1上做定积分,当然还是C.

1/(x^2+2x+2)^0.5的定积分,积分区间为-1到0 (cosx-(cosx)^3)^0.5的定积分,积分区间为

第一个1/(x^2+2x+2)^0.5的定积分可以化简成1/((x+1)^2+1)^0.5,然后把(x+1)当成u,du/dx=1,所以du=dx,所以原式可以换成∫1/(u^2+1)^0.5du,这

高等数学1函数积分问题.

再问:百度真应该多几个像你这样的人才

1/1+cosx dx的积分

用万能代换∫1/1+cosxdx=∫1/(2cos^2(x/2))dx=1/2∫sec^2(x/2)dx=tanx/2+C

求积分:∫ sinx*sinx/(1+cosx*cosx)dx

设t=tanx,则x=arctant,dx=dt/(1+t²),sec²x=1+t²故∫sin²x/(1+cos²x)dx=∫tan²x/(

高等数学 积分 ∫xsinx/[1+(cosx)^2]dx

πarctan(π/2)π∫xsinx/[1+(cosx)^2]dx0π/2=∫xsinx/[1+(cosx)^2]dx0π+∫xsinx/[1+(cosx)^2]dxπ/2令后式中x=π-t,则后式

求积分:∫[1/sinx(1-cosx)]dx,

∫1/[(1-cosx)*sinx]dx=∫(1+cosx)/[(1-cos²x)*sinx]dx,分子,分母,各乘以一个(1+cosx)=∫(1+cosx)/sin³xdx=∫c

积分(1-cosx)dx/(x-sinx)

∫[(1-cosx)dx]/(x-sinx)=∫d(x-sinx)/(x-sinx)=ln(x-sinx)+C原式=∫(x+1-4)dx/(x²+2x+3)=∫(x+1)dx/(x²

求1/(cosx+3) dx的积分

万能代换t=tan(x/2),则x=2arctant,dx=2dt/(1+t^2),cosx=(1-t^2)/(1+t^2),所以∫dx/(cosx+3)=∫dt/(t^2+2)=1/√2×arcta

高数积分题,用换元法,积分0到π/2 ∫ 1/(1+cosx^10)d

对,先要把分母整理出来,最好是乘积的形式,然后根据分母的形式拆开,因为分母是二次整理出来就是一次,讲分子也变成分母的样子,因为都是常数积分简单…

d (定积分[cosx,1]e^(-t)^2)dt/dx

设F'(x)=e^(-x)^2(定积分[cosx,1]e^(-t)^2)dt=F(1)-F(cosx)d(定积分[cosx,1]e^(-t)^2)dt/dx=[F(1)-F(cosx)]'=F'(1)

求二重积分XY+COSX*sinY在(1,1)(-1,1)(-1,-1)为顶点三角形的D积分过程

将积分区域沿中间分为两部分D1:关于y对称的区域D2:关于x对称的区域通过奇偶性的分析,XY+COSX*sinY在D2的积分为0【关于y的奇函数】同样的,xy在D1上的积分也是0【关于x的奇函数】只需