高数第一类曲面积分圆柱侧面在yoz面投影
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:29:21
圆柱和圆锥都是由长方形和直角三角形沿直角边旋转得到的,所以它们的侧面都是曲面;所以原题说法正确.故答案为:正确.
1、(√)2、(√)3、(×)
D都有一个曲面两个平面.一定对
圆柱有(3)个面,上下两个(圆)面叫做底面,和另一个曲面叫做侧面
侧面就是曲面
对,我早学过了
底面积=圆周率×半径的平方侧面积=底面周长×圆柱的高(底面周长=圆周率×直径)圆柱表面积=侧面积+两个底面积
因为它不在一个平面上
再答:应该看得清楚吧,看不清楚给我说再问:谢谢你~
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
面积=∫∫dS=∫∫√[1+(z'x)²+(z'y)²]dxdy第二个是二重积分,z=f(x,y)是围成立体的上下两个面,就是躺着的圆柱体表面x²+z²=R&s
二重积分算的是平面区域定义域的面积再答:而曲面积分可以计算三维曲面面积再答:也就是说二重积分最多就只能计算平面闭区域的面积,而曲面积分可以算三维曲面面积,例如球表面面积再答:希望采纳,欢迎追问再答:希
曲面积分分两类:第一类曲面积分(对面积的曲面积分)几何含义,知道某曲面每点的面密度,求质量.具体例子:蛋壳的质量.第二类曲面积分(对坐标的曲面积分)几何含义,知道某曲面每点的流速,求单位时间内的流量.
根据r的定义,就是根号下x^2+y^2+z^2;(曲面积分定义)=积分号积分好)1/(R^2+z^2)dS后把圆柱侧面分成xoz对称的俩曲面,在右半侧面区面积分定义,按照投影到xoz坐标面的步骤
楼上前一个积分算错了,这不是上半球面.我的答案:如有不懂,再问:您的问答我看懂了。不好意思,还有到类似的问题,不知道能否请您帮我解答下:曲面积分∫∫(y^2-x)dydz+(z^2-y)dzdx+(x
第一类曲线、曲面积分是在积分曲线每点指定一个标量函数,与线元相乘后求积分.第二类曲线、曲面积分是在积分曲线每点指定一个矢量函数,与线元矢量点乘之后求积分.这可以保证两者积出来之后都是实数.这样,第一类
对的,数学书上有(6下).
关于第一类的对称性,我记得前两天我很详细得给你写过,如果有不明白可以追问.至于第二类,我不建议使用对称性来做,因为第二类的曲线(或曲面)是有向的,对称性很难考虑,也容易出错.第二类曲线积分一般是用参数
面积=∫∫√[1+(z'x)²+(z'y)²dxdy其中z'x=-x/z,z'y=-y/z√[1+(z'x)²+(z'y)²=|a/z|现在分析被积区域的取值范