高代中自由未知量怎么算 n-r? 表示啥?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 06:53:33
答案不一样就算是取相同的自由未知量,答案也可以不同
/>唯一解的充要条件是R(A)=R(B)=r=n,即r=n【唯一秩等于变量的个数.】
基础解析的k都在外面吧...如果定里面的系数,是应该取1,书上可能是因为化简去分母了所以乘了个2
x1,x2是由x3,x4决定的.所以x3,x4可以取任意数组的值,求出x1,x2,联合起来就是一组解.再问:能问一下如何理解基础解系的含义吗,为什么要取两组呢
因为是非齐次线性方程组,首要问题是方程组有解非齐次线性方程组有解的充分必要条件是r(A)=r(A,b)所以(D),(C)都不对当r=m时,m>=r(A,b)>=r(A)=r=m此时方程组有解.若r=m
把系数矩阵经初等行变换化成梯矩阵非零行的从左至右第1个不等于0的数所处的列对应的未知量是约束变量,其余未知量就是自由未知量.如A化成123450067800009非零行的首非零元是1,6,9,处在1,
对,当做到最后一步,有了自由变量后,赋值时有无穷赋值方式.你说得是常见的赋值方式,图上给出的是根据表达式的特点,能得到整数的基础解系对应的赋值方式.对自由变量赋值,只要赋值时是线性无关的向量就可以,比
有个定理是:齐次线性方程组基础解系所含向量的个数等于未知量的个数减去系数矩阵的秩.所以答案为n-
这是按x1,x2为自由未知量得到的基础解系把x2和x3当作自由未知量也没问题,1-1/4-1/4000000可得基础解系(1,4,0),(1,0,4)再问:可是不是规定把非零行的非零首元作为非自由量么
基础解系中向量的任意组合依然是方程的解,这种组合是无限个的
11-2030021300004掌握一个原则:自由未知量所在列其余列构成列向量组的一个极大无关组x5不是,故选(A)再问:那么,理论上,自由未知量是不是可以选x1和x2或是x1和x3或是x2和x3或是
有可能,但最终不同的通解是等价的
求特解的过程中,令自由未知量都为零,因为是非齐次线性方程组,这样所有的未知量不可能都是零的,特解一定是非零解.特征向量一定是非零向量,这是由特征向量的定义决定的.
变量与未知量是一回事
设置线性方程组定义包含两个未知数,并且项中包含的方程数1未知数被称为线性方程.一旦两个联立方程在一起,这两个方程,以形成一组线性方程.有一组方程由几个方程称为方程的.如果方程有两个未知数,数目不详包含
给这个变量赋值,只要不是0就行再问:哦
在n>m时,映射Ax系统可以将n维空间的点映射到m维空间中的r维子空间,且是满射,在m=r时,就是到m空间的满射,因此,对于m空间中的任意点b,都存在源点.有无穷多解.在n
R(A)=r=m即方程组中方程的个数就等于系数矩阵A的秩,因此A是满秩的矩阵,所以增广矩阵R(A,b)=R(A)那么方程组当然是有解的