sin1 n证明收敛发散
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 04:53:24
有条件收敛和绝对收敛等,要看具体情况.
用比较判别法,如图,
正项级数Sn-S(n-1)=un>0,即Sn>S(n-1),所以un/Sn^2
通项=(-1)/(2n-1)=(-1)×1/(2n-1)把常数-1提出来判断通项为1/(2n-1)的级数就行了因为1/(2n-1)>1/(2n)=0.5×1/n因为通项为1/n的级数是发散的(调和级数
反证法假设(一个发散级数∑An加上一个收敛级数∑Bn)结果∑(An+Bn)发散不正确即∑(An+Bn)收敛那么由∑(An+Bn)收敛,∑Bn收敛,可知∑[(An+Bn)-Bn]收敛,即∑An收敛,与已
收敛convergence与某个实数a无限接近的数列{an},即当时,就说数列{an}是收敛的,否则就说{an}为发散数列.例如,{}是收敛数列,因为当n无限增大时,与实数0无限接近,也即.{}也是收
级数∑1/n^2的前n项和sn=1+1/2^2+1/3^2+……+1/n^2是递增的,且sn
无法判断.xn=1/2^m,yn=2^nxn*yn=2^(n-m)n>=m,发散n
请点击图片查看解题过程(仔细检查过,应该没有错题、漏题.).教材问题不妨在Baidu-Hi上联系我.此外,若仍然存在少量妨碍阅读的笔误,我将尽快订正.
B:有比值判别法(记得复习),lim(n->00)an+1/an=e/PI再问:收敛+发散就等于发散????再答:这个是的,因为如果她不发散就收敛,收敛加收敛还是收敛,就不发散了。再问:那发散加发散还
你是如何知道到500已经收敛了呢?残差只是观察是否收敛的一个标准而已,或者说一个比较弱的标准,是否收敛还是要针对你的物理问题而言,观察结果是否符合其物理规律或者理论,监测一些代表性的面或者点的典型物理
知limn/(lnn)^9->∞那么存在N足够大,使得当n>N时,1/n*1/lnn(1->N)∑1/(lnn)^10+(N+1->∞)∑1/n*1/lnn而∑1/n*1/lnn由比较积分得知O(∑1
收敛+发散=发散收敛+收敛=收敛发散+发散=可能收敛,可能发散
把通项拆成两项,第一项构成收敛的等比级数.第二项放大成n/3^n
如果{an+bn}收敛因{an}也收敛对任何e都有N1,N2使k>N1就有|(ak+bk)-L|N2有|(ak)-A|N1,N2中较大者,有|bk-(L-A)|=|(ak+bk)-L+(ak-A)|无
用反证法证明假设∑[a(n)+b(n)]收敛lim∑b(n)=lim(∑a(n)+∑b(n))-lim(∑a(n))显然lim∑b(n)存在,这样就得到矛盾.
先看调和级数:证明如下:由于ln(1+1/n)<1/n (n=1,2,3,…) 于是调和级数的前n项部分和满足 Sn=1+1/2+1/3+…+1/n>ln(1
设An={ai|i>=n},n=1,2,.An是有界集,所以存在上确界bn,下确界cn.且有:c1