sin(x+2y-3z) e-xy2z=0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:27:00
1.x+y+z2.-x-3y-1
sin^2(x-y)+sin^2(y-z)+sin^2(z-x)=[1-cos2(x-y)+1-cos2(y-z)+1-cos2(z-x)]/2=3/2-[(cos2xcos2y+sin2xsin2y
【证明】首先必须了解和差化积公式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2](1)sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2](2)cosα+c
有这样的公式:a^3+b^3+c^2-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)左边减右边,证明:(x+y-2z)^3+(y+z-2x)^3+(z+x-2y)^3-3(x+y
再答:隐函数高阶求导。再答:
1.y'=e^(2x)+2xe^(2x)=(1+2x)e^(2x)2.y'=[2xcos2x-sin2x]/x^23.y'=3cos(3x+π/3)
偏导真不好写呀偏z/偏y=x^2*e^y偏(偏z/偏y)/偏y=x^2*e^y
两端对x求偏导得:-ye^(-xy)-2(z/x)+(z/x)e^z=0,所以,z/x=ye^(-xy)/(e^z-2)两端对y求偏导得:-xe^(-xy)-2(z/y)+(z/y)e^z=0,所以,
x=sin(y/x)+e^2求dy/dxd(x)=d(sin(y/x)+e^2)dx=dsin(y/x)+de^2dx=cos(y/x)d(y/x)dx=cos(y/x)(xdy-ydx)/x^2x^
x+3>0,且ln(x+3)≠0得:x>-3且x≠-2所以,定义域为(-3,-2)U(-2,+∞)
1、隐函数对x求导得1+az/ax+yz+xy*az/ax=0,故az/ax=-(1+yz)/(1+xy);F对x求导得aF/ax=e^x*y*z^2+e^x*y*2z*az/ax;当x=0,y=1时
sinx+siny+sinz-sin(x+y+z)=4sin[(x+y)/2]sin[(x+z)/2]sin[(y+z)/2]sinx+siny+sinz-sin(x+y+z)=2sin[(x+y)/
σu/σx=(z+y)+x(σz/σx+0)=z+y+xcos(x+y)σ2u/σxσy=σz/σy+1-xsin(x+y)=cos(x+y)+1-xsin(x+y)
由已知得dy/dx=(e^y+z)/(e^x+z),dz/dx=(z^2-e^(x+y))/(e^x+z),dz/dy=(z^2-e^(x+y))/(e^y+z),所以可以得到三式,e^ydx+zdx
公式输入了好半天,希望可以看懂哈!另外,可以不用辅助函数,直接利用已知等式计算求导.
x+2y+z=e^(x-y-z)两边对x求偏导注意到z=z(x,y)1+z'=e^(x-y-z)*(1-z')...(1)再对x求偏导z"=e^(x-y-z)(1-z')^2-z"e^(x-y-z).
z=sin(x²y²)+3x-5y²+1所以δz/δx=cos(x²y²)*2xy²+3δz/δy=cos(x²y²)*
y'=2e^2xcos(e^2x)把y看成复合函数sint,t=e^m,m=2x.复合函数求导,等于三个分别求导的积
设x/2=y/3=z/5=ax=2ay=3az=5a是不是求的是:(x+3y-z)/(x-3y+z)?若是,如下:(x+3y-z)/(x-3y+z)=(2a+9a-5a)/(2a-9a+5a)=-3