13.若D是由和y=4x围成 ,求D的面积.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 10:13:47
二维随机是服从均匀分布的,所以根据公式知道:f(x,y)=1/8(D区域面积的倒数)所以X的边缘分布为:∫(0,x)1/8dy=x/80
注意到积分区域,1-x^2-y^2大于等于零. 利用极坐标可得 再问:我不知道你怎么想的啊,说明白点撒。再答:积分区域内,1-x^2-y^2大于等于零。所以绝对值没有用。还是...
先画图,求曲线交点是(1,1),旋转完后,你想象一下做许多垂直于y轴的平行平面去截旋转体,得到的每个平面面积都是可求的,其实就是求平行截面为已知图形的物体体积.作x轴平行线y=y0交原平面图行于两点,
V=∫πX^2dy(y=0->1)=∫π(1-y)dy=π/2
原式=∫dθ∫rdr/√(4-r^2)(作极坐标变换)=2π∫rdr/√(4-r^2)=2π[√(4-0^2)-√(4-2^2)]=4π.
设(X,Y)的联合密度函数f(x,y)=a(x,y)∈D首先有概率完备性知1=∫∫f(x,y)dxdy=∫∫adxdy=a∫(0,1)dx∫(x^2,x)dy=a/6所以a=6.(X,Y)的联合密度函
先画出积分区间,显然y=1/x和y=x的交点是(1,1)那么x的积分区间是(1,2)于是原积分=∫(1到2)3xdx*∫(1/x到x)1/y²dy=∫(1到2)3xdx*(-1/y)代入y的
虽然积分区域是关于x轴对称的.但是被积函数(x+y)³却不是对称的.所以不能用对称性解吧~~假设有两个四面体,虽然它们的底都是同样的三角形,但是它们的高不一样,所以体积也未必一样.所以∫∫_
y=x=>θ=π/4y=x^4=>rsinθ=(rcosθ)^4=>r^3=sinθ/(cosθ)^4=>r=[sinθ/(cosθ)^4]^(1/3)I=∫[0->π/4]∫[0->[sinθ/(c
∫∫D(x+6y)dxdy=∫dx∫(x+6y)dy=∫dx(xy+3y²)|=∫(5x²+75x²-x²-3x²)dx=∫(76x²)dx
曲线y=√x与直线y=x的交点为(0,0)和(1,1)于是积分区域D={(x,y)|y²≤x≤y,0≤y≤1}从而原式=∫[0,1]siny/ydy∫[y²,y]1dx=∫[0,1
∫∫(√x+y)dxdy=∫dx∫(√x+y)dy=∫(15/2)x²dx=(5/2)x³|=5/2
被积区域如下图以极坐标表示,设x=r·cosθ,y=r·sinθ则被积区域可表示为,0≤θ≤π/4,0≤r≤1/cosθarctan(y/x)=θ则有再问:我感觉积分区域应该是右下侧那部分,1/cos
X区域:D:x=2,y=1,y=x==>1≤x≤2,1≤y≤x∫∫_Dxydxdy=∫(1→2)dx∫(1→x)xydy=∫(1→2)[xy²/2]:(1→x)dx=∫(1→2)(x
9/8再问:给我完整的过程好吗?