非方阵的伴随矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:11:18
n阶矩阵A与其伴随矩阵A*的关系如下若r(A)=n则r(A*)=n若r(A)=n-1则r(A*)=1若r(A)
可用行列式的性质如图计算,答案是32.经济数学团队帮你解答,请及时采纳.
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
3,A*也是满秩的因为A可逆,所以A*A=|A|E,也就是说A为A*的逆,所以A*也是满秩的
题目里5阶方阵的秩是3暗示了有两个全零行,那么他的伴随矩阵的各元素都是由他的代数余子式组成,这时候你就不难发现他们的余子式至少有一行全为0,那么所有的代数余子式也为0,那么他们的伴随矩阵的秩也就为0.
貌似选c这有例子,自己看看.加油,线性代数还是挺麻烦的,多看看书.
【反证法】假设A不可逆,则|A|=0所A·A*=|A|·E=0因A*逆,等式两边右乘A*的逆,得A=A·A*·A*的逆=A·A*·A*的逆=0·A*的逆=0即有A=0进而有A*=0(根据伴随矩阵的意义
直接可以用下面的公式
|3A^(-1)-2A*|=|3A^(-1)-2|A|A^(-1)|=|3A^(-1)-A^(-1)|=|2A^(-1)|=2³(1/|A|)=16再问:仁兄,倒数第三步到倒数第二步怎么来的
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
设A是N阶可逆矩阵,A*=|A|A-1,所以A**=(|A|A-1)*=|A|N-1A/|A|=|A|N-2A也就是A的行列式的N-2次方倍的A
确实缺少条件A的伴随矩阵,通常就是用A右上角*表示的.有这样的关系:若A非退化,则A*(A伴随)=det(A)*E.E为单位矩阵.从而有det(A)*det(A伴随)=det(A)^n.所以det(A
AA*=|A|E两边取行列式:|A||A*|=|A|^n所以|A*|=|A|^n/|A|=|A|^n-1=2^4=16.
肯定非零啊再问:再问一下哈,如果A为n阶方阵,R[A]<n-1,为什么有A*=0啊?再问:喔!想通了了〜还是谢了哈
1,8,9其实对角元就是所有的A(i,i)
|(2A*)|=2^3*|A*|=8*|A|^(3-1)=8*9=72
|A*|=|A|^(n-1)=2^2=4.证:A*=|A|A^(-1),得|A*|=|A|^n*|A^(-1)|=|A|^(n-1).
n阶方阵A可逆,|A|≠0AA*=|A|EA*=|A|A^(-1)|A*|=|A|^(n-1)≠0A*可逆
知识点:|A*|=|A|^(n-1),其中n是A的阶.所以|A*|=|A|^(3-1)=2^2=4再答:记住公式就好了再答:亲,你的问题我已经回答完毕,如有不明白,请继续追问,满意的话请点一下右上角【
没有,伴随矩阵是方阵特有概念