rt三角形abc的内切圆圆o与ab,bc,ca分别相切与点d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:01:15
rt三角形abc的内切圆圆o与ab,bc,ca分别相切与点d
如图,在Rt三角形ABC中,角C等于 90,AC=8.BC=6圆O为三角形ABC的内切圆

圆半径2,OG为根号5再问:怎么算←再答:圆半径等于(AC+BC-AC)/2再问:OG呢再答:三角形OGF中OF=2,FG=1,所以OG为根号5

图,圆O是Rt三角形ABC的内切圆,若角ACB=90°,AC=12,AB=13,则图中阴影面积为?

勾股定理得:BC=5设圆的半径为r0.5X5X12=0.5XrX(5+12+13)r=2阴影面积为0.5X5X12-π2²得数自己算吧

如图,已知圆o是Rt三角形abc的内切圆,斜边ab与圆o相切于点d,ao的延长线交bc于点e.求证:ad×ae=ao×a

已知,斜边ab与圆o相切于点d,可得:od⊥ab,而且,ac⊥bc,∠bae=∠cae,可得:ad/ao=cos∠bae=cos∠cae=ac/ae,所以,ad×ae=ao×ac.

圆O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12,求此三角形减去内切圆的面积.

设圆半径为R在Rt△ABC中,BC²=AB²-AC²=13²-12²=25∴BC=5S△ABC=1/2(BC×AC)=1/2(5×12)=30设圆心点

如图,圆O是Rt三角形ABC的内切圆,角C=90度,AD=2,圆O的半径为1,则三角形ABC的面积为

面积为6.AD=2,内切圆半径=1,所以三角形AOD中(AOD也是直角三角形),AD=2,OD=1,则AO=根号下5.设于是,sin

如图,在三角形ABC中,AB=AC,cosB=3分之1,圆O是三角形ABC的内切圆,圆A与圆O外切.求rA与ro之比为2

证明:设AB切⊙O于点F,BC切⊙O于点E,连接AE,OF,∵AB=AC,⊙O是△ABC的内切圆,⊙A与⊙O外切,∴AE过点O,FO⊥AB,AE⊥BC,∵cosB=13,∴cosB=BEAB=FOAO

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,圆O是RT三角形ABC的内切圆,D,E,F为切点,若AD=6,CD=4,求内切圆的直径

D=4设半径BE=BF=X(4+X)平方+(6+X)平方=10平方一个解是22X=2*2=4

如图,圆O是Rt三角形ABC的内切圆,角C=90度,圆O和三边分别切于点D,E,F.若AD=6,BD=4,求AC和圆O的

==设CE=CF=X因为切线BDBEECCFFAAD所以AF=AD=6,BD=BE=4所以在Rt△ACB中(4+X)平方+(6+X)平方=10平方X=2所以AC=4+X=4+2=6园O半径=X=2

如图圆O是三角形ABC的内切圆,且圆O的半径为5,三角形ABC的周长为40,求三角形的面积

如图,三角形面积为:0.5*((x+z)*5+(x+y)*5+(z+y)*5)=2.5*(2*(x+y+z))周长为:2*(x+y+z)=40所以面积等于40*2.5=100

如图圆O是三角形ABC的内切圆,且圆O的半径为5.,三角形ABC的周长为40,求三角形ABC的面积?

连接OA,OB,OC三角形ABC的面积等于OAB,OAC,OBC三个三角形的面积之和S=S1+S2+S3=1/2*OD*(AB+BC+AC)=1/2*5*40=100

如图圆o是rt三角形abc的内切圆,角abc=90度,ab=13.ac=12.则阴影部分面积为

整体思路为三角形减去圆面积,圆心连三个顶点,用面积来算出半径,就可以得出答案再问:怎么算圆的半径再答:AC*R+BC*R+AB*R=三角形面积也就是AC*BC/2再答:前面忘了除以2了,SORRY

如图圆o是rt三角形abc的内切圆,角abc=90度,ab=13.

由题意:BC=根(AB²-AC²)=5,所以三角形的面积s=1/2ACBC=30..所以.的内切圆半径r=2s/(a+b+c)=60/30=2,故s阴影=30-4π.选D.

如图,圆O是Rt三角形ABC的内切圆D、E、F分别是切点,∠ABC=90°,∠BOC=115°,则∠A=?,∠ABC=?

角A为50度角ABC为九十度角C为四十度问题提清楚再说再问:对不起,是∠ACB=90°再答:角A为50度角ABC为40度因为EO=FO且角OFC=角OEC=角ECF=90度所以EOFC为正方形所以角C

圆O是Rt三角形ABC的内切圆 DEF为切点 DE延长线与AC延长线交于G 求证 BD=CG

连接ODOEOBOFOCRT三角形ABC中,BD=BE,OE=CF=CE(因为OBOC都是角平分线,角平分线的一条性质决定了所分三角形全等,如OBD全等于OBE)设OB交DE于H可以证明BEH相似于O

z在RT三角形ABC中,角C等于90度,内切圆O分别与AB,BC,CA相切于点D.E.F求证:...

证:(1),∵内切圆O,∴OE⊥BC,OF⊥CA,OE=OF=r.又∵角C等于90°,又∴正方形FCEO.(2),S=a·b/2,且S=a·r/2+b·r/2+c·r/2=r·(a+b+c)/2,两式

三角形ABC的内切圆圆O与三边分别相切与DEF三点,AB,BC,CA,CE,AF,BD这六条边有什么数量关系?如何证明?

由于圆O为内切圆,因此O为三角形ABC之内心,即为三条角平分线交点.因此AE=AF,BF=BD&CE=CD.因此,AB=AF+BF=AF+BDBC=BD+CD=BD+CEAC=CE+AE=CE