随机变量的均匀分布的平均值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:16:57
随机变量的均匀分布的平均值
概率论:如何求二维服从均匀分布 相互独立的随机变量的期望?

由独立性,从联合分布中求出边际分布(或概率密度),然后利用一维随机变量期望计算公式即可.也可以直接利用公式求,见图 至于第二问许多教材里都有类似的例题,如茆诗松教授等编写的概率论与数理统计教

概率论!设随机变量X服从[1,4]上的均匀分布,则P{X>2}=?谢谢!

既然是均匀分布,可以利用几何概型的方法所以,所求的概率为:P(x>2)=(4-2)/(4-1)=2/3再问:麻烦看下私信,谢谢!再答:哦,好的。

1、已知随机变量X服从[2,6]上的均匀分布,则P{3

所以P{3再问:答案是EX吗?再答:嗯啊,第二个题目再问:第一题呢谢谢再答:P{3

设二维随机变量服从圆域的均匀分布,

二维随机变量服从圆域x^2+y^2再问:最后那一步dxdy变成drdθ是怎么出来的?以前学的不太记得了。再答:这是公式啊

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

随机变量X与Y相互独立且都服从区间(0,1)上的均匀分布,则下列随机变量中服从均匀分布的有

Cx,y独立,所以XY二维平面上(x,y)各自(0,1)区间的正方形也是均匀分布的.A明显不对,可以随便取一个0到1的值反证.B和D的分布在XY二维图中是斜着的两条直线,能直接看出来不是均匀分布.再问

随机变量X服从区间[0,2π]上的均匀分布,求数学期望E(sinx)

概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.

求助一道随机变量的均匀分布的数学题

这个其实是概率问题,U均匀分布于{1,2,3},所以U取1,2,3中的任何一个数的概率是1/3.而u∈{1,2,3},那么u能够等于{1},{2},{3},{1,2},{2,3},{1,3}.则u能够

随机变量X的数学期望E(X)是平均值吗?他是怎么样的平均值?设X服从[a,b]上的均匀分布,则X的史学期望值EX

是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么

随机变量(X,Y)服从区域D上的均匀分布,其中D=(0

从题设易知X与Y独立,且X与Y的联合概率密度为f(x,y)=1/2,0

用MATLAB编制计算均匀分布随机变量均值和方差的通用程序

帮你写好了.这是画图的效果clearall,closeall,clc;%修改a和b确定随机变量的范围a=-1;b=1;X=(rand(100000,1)*(b-a))+a;%均值和方差m=mean(X

设随机变量X在(-π/2,π/2)上服从均匀分布,试求随机变量Y=sinX的密度函数

先求出分布函数的关系如图,再求导得出Y的概率密度.经济数学团队帮你解答,请及时采纳.