随机变量X服从区间(2,5)上的分布,求方程t^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:46:02
随机变量X服从区间(2,5)上的分布,求方程t^2
假设随机变量X服从参数为2的指数分布,证明:随机变量Y=1-e^(-2X)在区间(0,1)上服从均匀分布.

事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).

大学概率论试题答案:设随机变量X在区间(1,2)上服从均匀分布试求

回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1

设随机变量X服从区间(0,2)上的均匀分布试求X的分布函数Fx(X)

/>1)X在(0,2)上均匀分布,所以X的密度函数是:通过积分可以求出X的分布函数:2)可以利用密度函数求出这个概率,也可以利用分布函数,以下为步骤,结果是0.5:3)我们可以把Y写成X的函数,Y=g

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

随机变量X服从区间[0,2π]上的均匀分布,求数学期望E(sinx)

概率密度函数:f(x)=1/(2π)x:[0,2π]=0其它xE(sinx)=(1/2π)∫(2π,0)sinxdx=-(1/2π)cosx|(2π,0)=0即:E(sinx)=0.

设随机变量X服从区间[-1,1]上的均匀分布,求Y=2-X的概率密度

由已知,f(x)=1/2,(-1再问:x��ȡֵ��ΧΪʲô�ǣ�-1,1������[-1,1]?���y��ȡֵ��ΧΪʲô��[-1,3)����ȡ��ô��再答:��Щ����ϸ�����⣬�

设随机变量X服从区间为[1,3]上的均匀分布,且Y=2X+1,求D(Y).

由方差的性质:D(Y)=D(2X+1)=4DX,而均匀分布的方差:DX=(3-1)^2/12=4/12=1/3故:D(Y)=4/3这个题是方差的性质与均匀分布的方差的应用,要熟练掌握.

设随机变量x服从区间(1,2)上均匀分布,试求Y=e^2x的密度函数

P(Y≤y)=P(e^2x≤y)=P(x≤lny/2)而X服从U(1,2)所以P(X≤x)=x于是P(Y≤y)=P(x≤lny/2)=lny/2所以f(y)=1/2y因为x在(1,2)上所以y=e^2

随机变量X服从在区间(2,5)上的均匀分布,则X的数学期望值E(X)的值为多少

套用均匀分布的期望公式,可得EX=(2+5)/2!望楼主采纳!