随机变量X在区间-0.5,0.5上服从均匀分布,求随机变量Y的数学期望和方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 23:58:51
(1)f(x)=1/(b-a)=1/4P{-0.5
做出这个效果很辛苦,
事实上,任意随机变量的分布函数(CDF)均服从(0,1)上均匀分布. 补充.Y就是X的累积分布函数,累积分布函数的取值范围只能是(0,1).
首先X是连续型随机变量,取任何一个定值的概率都是0,因此X=0和X=1的概率是0,也就没有0和2了.其次,均匀分布的随机变量在某区间取值的概率正比于该区间长度,且总概率为1,因为X分布在[-1,2],
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
回答:随机变量X的概率密度为f(x)=1/(2-1)=1,(1
f(x)=1/3-2
详细过程点下图查看
X服从均匀分布,即X~U(a,b),则E(X)=(a+b)/2,D(X)=(b-a)²/12证明如下:设连续型随机变量X~U(a,b)那么其分布函数F(x)=(x-a)/(b-a),a≤x≤
密度函数:f(x)=1/(b-a)[a,b]f(x)=0其它x数学期望Ex=∫(a,b)x/(b-a)dx=0.5/(b-a)(b^2-a^2)=(a+b)/2Ex=(a+b)/2方差Dx=∫(a,b
-4再问:求详解,最好能给个QQ还有好多概率论问题想请教!我的QQ452475793谢谢再答:QQ550605021详解如下。随机变量X在区间(-1,+00)内取值的概率:P=1-F(-1)随机变量Y
已知X~U[a,b],即X服从区间[a,b]上的均匀分布则X的概率密度函数为p(x)=1/(b-a)x∈[a,b]=0其他
P(Y=1)=P(X>0)=2/3,P(Y=0)=P(X=0)=0,P(Y=-1)=P(X
若连续型随机变量X的概率密度为f(x)=1/b-a,(a≤x≤b);f(x)=0,(其他);则X服从区间[a,b]上的均与分布,其分布函数为F(x)=x-a/b-a,(a≤x≤b);0,(xb);若X
连续区间,把-2和1代入即可,区间为(1/2,2)
服从正态分布,密度函数关于x=0对称.所以B再问:为什么说密度函数关于x=0对称。所以B再答:··概率的大小等于密度函数跟X轴的面积嘛,对称轴左边的总面积不就是一半嘛~
做好了!希望批评指教.
0.52x+(118-x)*0.33=53