随机变量X分布函数为F(X) 0,X
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:04:28
X服从[0,8]上均匀分布,E(X)=4,D(X)=64/12=16/3再问:麻烦大神能不能将解题过程写的详细点再答:常用分布,[a,b]均匀分布,E(X)=(a+b)/2,D(X)=(b-a)^2/
(1)F(x)必须在x=1连续,所以A*1=1,A=1(2)p(0.3再问:第一小题能不能详细点,不怎么懂耶再答:x是连续型随机变量,所以F(x)应该是连续函数。那当然F(x)在x=1点也应该连续。1
利用积累分布函数的性质F(负无穷)=0,F(正无穷)=1,F是不减的那么b必须为0因为b>0时,F(负无穷)=正无穷
很明显是0啊再问:可是答案是2/3。。。再答:得敢于怀疑答案!连很多大学使用的某某出版社的《概率论与数理统计》,好像是第二章第一个例题,都犯了类似的错误,把F(x)和f(x)的表达式弄错了。至少我坚持
P(X=-2)=0.1;P(X=0)=0.3;P(X=1)=0.4;P(X=3)=0.2;E(X)=-2*0.1+0*0.3+1*0.4+3*0.2=0.8;E(1-2X)=1-2E(X)=1-1.6
X的概率分布:P(X=0)=0.5P(X=1)=0.3P(X=3)=0.2
Ax^题目有问题啊这个的一般的做法是求(0,1)上Ax^的定积分这个定积分等于1然后就可以求出A的值把题目重新发一下吧
由于概率函数连续,所以Asin(π/2)=1,即A=1对F(X)求导得密度函数f(x)=cosx,0≤x≤π/2,其他为0所以E(X)=∫(0,π/2)xcosxdx=(π/2)-1
E(X)=2随机变量X的分布函数F(x)在x
求极限:limAsinx=1(x→π/2),得A=1P(|x|
因为实际上在连续型随机变量的中单个点的概率是没有意义的,这一点无论是从连续型随机变量概率的定义还是从计算方法来看都是可以说明问题的(从负无穷到正无穷的概率一共为1,那么单个点的概率就是用1除以一个无穷
答案见图中
1.常数k吧F(1+)=1,连续所以F(1-)=F(1+)=K得K=12.f(x)=F'(x)是个分段函数f(x)=0,x<0f(x)=1,0≤x<1f(x)=0,1≤x(3)p(|x|<0.5)=p
概率密度f(x)=F'(x).故:|x|
A=1因为当x趋于零时,A可以是任意一个常数,是不能确定的.
(1)x→1时,F(x)→F(1)=1,即A*1^2=1,所以A=1,F(x)=x^2,0≦x<1时(2)P(0.3<x<0.7)=F(0.7)-F(0.3)=0.7^2-0.3^2=0.4(3)x<
F(4)-F(2)=1-2/3=1/3
(1)f(x)该是密度函数,{x=-∝→+∝}∫f(x)dx={x=0→1}∫f(x)dx={x=0→1}(A*x^3)/3=A/3=1,所以A=3;(2)F(x)=0,{x1};(3)P(0.3