随机变量(X,Y)的联合概率密度是f(x,y)=x^2 y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:56:05
直观的根据面积来算,x=y,x=2y,x=3y,都是直线,是无具体面积的而XY是在一个具体的区域内,故为0可以算一下XY的概率,来比记忆加以理解
既然两者独立,那就把两者的概率密度直接相乘就可以了.
5题:f(x,y)=ke^(-y),00.f(y)=∫[0,y]e^(-y)dx=ye^(-y),y>0.(4)f(x|y)=f(x,y)/f(y)=1/y,0再问:第5题的(6)(7)题,麻烦你了,
是的,就是这样求的.再问:还可以二重积分那样求呢再答:二重积分求也是类似于‘先求出X的边缘概率密度,然后按照一维随机变量计算期望’只不过二重积分把‘先求出X的边缘概率密度,然后按照一维随机变量计算期望
再问:额,第一题的积分公式是什么?再问:什么时候可以把指数放在前面?负的指数能放前面吗?就是像x^2的积分是1/3x^3,我好像一直用错公式了。再问:我再想想再问:我好像知道了。。。我再看看再问:第三
∫∫f(x,y)dxdy=∫kxdx(0-->1)∫dy(0--->x)=∫kx^2dx(0-->1)=k/3=1--->k=3X的边缘概率密度fX(x)=∫3xdy(0-->x)=3x^2Y的边缘概
1.f(X,Y)关于X的边缘概率密度fX(x)=f(x,y)对y积分,下限x,上限无穷,结果fX(x)=e^(-x)2.f(X,Y)关于Y的边缘概率密度fY(y)=f(x,y)对x积分,下限0,上限y
套公式即可.σ1^2=DX=16,σ2^2=DY=25.ρ=Cov(X,Y)/(σ1σ2)=0.6,√(1-ρ^2)=0.8.f(x,y)=(1/32π)e^{(-25/32)[x^2/16-3xy/
再问:为什么是用“1-”,而不能用整个面积去减?还有(4)的x的取值为什么是0到1而不是Y到1?我一直搞不懂这些取值是怎么定的?还有我最后一题看不懂...再答:第一个问题:整个面积的积分的概率就是等于
(1)∫∫(-∞,+∞)f(x,y)dxdy=k/3=1k=3(2)fX(x)=∫(-∞,+∞)f(x,y)dy=3x²,0
对f(x,y)求积分上下限都是0-1,这个积极结果=1求出c*1/2*1/3=1/6c=1c=6.(2)前面的积分结果中把上下限换成0-0.5,此时c=6,求值.(3)当0
1)在第一象限内作以下三条曲线在第一象限内的部分y=xy=x^2x=1于是f(x,y)=k的区域即为这三条曲线围成的曲边三角形内部,记此区域为D其余部分f(x,y)均为零由归一化条件,(S表示积分号,
随机变量(X,Y)的联合概率密度分别如下:f(x,y)={ke^-(3x+4y)},x,y>00其他(1)∫∫f(x,y)dxdy=1所以∫(0,∞)∫(0,∞)k*e^-(3x+4y)dxdy=k*
我想那个(x+y)应该在分子上的,如果在分母上可是巨麻烦的
(1)p(x,y)=(1/3)e^(-3x)(1/4)e^(-4y)-->k=1/12.X和Y独立.(2)P(0
1)P(xy<1)很简单,就是对下图阴影的面积求二重积分∫(1/2~2)∫(1/2~1/y)1/(4x²y³)dxdy= ∫(1/2~2)1/(4(1/2)y
再问:最后一题,X、Y是否相关?请问该怎么做?答案是线性相关。