r=3cos(θ)与r=1 cos(θ积分求面积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:12:54
如图所示圆弧r=1以外而圆弧r=2cosθ以内的图形的面积等于1.23
(R)={,,,,},s(R)={,,,,},t(R)={,,,,}
椭圆方程代入圆方程后应该是3x²-8x+8-4r²=0,而不是x²+4x-8+4r²=0,这样由△=16(3r²-2)≥0得r≥√6/3.但是这样做并
马小跳童鞋,我来了,看好了 再问:���֪��ͼ���ǻ����ó��
心形曲线r=a(1+cosb)形状是绕了一圈他的定义域是[0,2π]但是他关于x轴对称我们求面积的话,只要求上半部分就好了因为下面的面积和上面一样所以我们只做[0,π]上的面积,再前面乘以那个2就行了
看你的输入,应该是极坐标方程,θ表示极角.
可以这么来:x=rcosθ=a(1+cosθ)cosθy=rsinθ=a(1+cosθ)sinθ(x,y)为坐标,θ为参数.
m(2rcosθ,2rsinθ)圆心轨迹是以原点为圆心,2r为半径的圆内切的定圆就是以原点为圆心,3r为半径的圆外切的定圆就是以原点为圆心,r为半径的圆
1=sinθr2=3cosθ两曲线在θ(0,π/2),交点θt=tg-1(1/3),r=1/10^0.5S=S1+S2S1=∫1/2*r1^2*dθθ(0,θt)S2=∫1/2*r2^2*dθθ(θt
希望对你有所帮助
这是一组极坐标方程.r=3cosθ是以(1.5,0)为圆心,3为直径的圆;r=1+cosθ是帕斯卡蜗线的一种;r=√2sinθ是以(0,√2/2)为圆心,√2为直径的圆;r^2=cos2θ是双纽线的一
已知复数z=r(cosθ+isinθ)z^2=r^2(cosθ+isinθ)^2=r^2(cos^2θ-sin^2θ+isin2θ)=r^2(cos2θ+isin2θ)z^3=z*z^2=r(cosθ
(1)cos(2x-θ)=cos[x+(x-θ)]=cosxcos(x-θ)-sinxsin(x-θ)cosθ=cos[x-(x-θ)]=cosxcos(x-θ)+sinxsin(x-θ)两式相加得:
联立两个方程r=3cosθr=1+cosθ当两个相等时,3cosθ=1+cosθ即2cosθ=1,θ=π/3和-π/3先对心形线在-π/3到π/3的面积求出来,因为上下对称,所以面积是上面一块的两倍S
解组合数的时候不一定要拆开来解,[(3r)(3r-1)(3r-2)……(2r+1)]/(r!)=C(3r,r)就写成组合数的样子就行,所以是C(3r,r)*2^r=60=15*2^2注意C(3r,r)
arccosx是指反三角的意思的.就是cosx的反函数.希望对你有用,有问题可以再找我
如图中红色圆所示
心脏线和圆围成的区域有几部分,公共部分,图形关于X轴对称,算一半,加倍即可.在[0,π/2]之间,是圆围成的面积,在[π/2,π]之间,是心脏线围成的面积.,再问:大神,能帮我做个图吗?我真心想不出来
再问:r=a(1-cosθ)或r=a(1+cosθ)(a>0)//含义是什么意思呀大哥能心细否?再答:极坐标方程水平方向:r=a(1-cosθ)或r=a(1+cosθ)(a>0)垂直方向:r=a(1-