Q是圆O上任意一点,A(2,0),OM为角AOQ的角平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:39:07
Q是圆O上任意一点,A(2,0),OM为角AOQ的角平分线
圆O的半径为定长r A是圆O外一个定点 P是圆上任意一点 线段AP的垂直平分线L和直线OP交于点Q当点P在圆上运动

连结AQ,则∵Q在AP的垂直平分线上,所以|AQ|=|PQ|,注意到||PQ|-|OQ||=|OP|=r,∴||AQ|-|OQ||=r所以Q的轨迹为以A,O为焦点,长轴长为r的双曲线

已知AB为⊙O的直径,C为圆上任意一点,过C的切线分别与过A,B的切线交于P,Q.求证AB^2=4AP乘以BQ

连结OP,OQ,易证OPQ为直角三角形,OC垂直于PQ,有性质OC^2=PC*CQ,圆外点到圆上两切线长相等,所以AP=PCBQ=QC且AB=2OC,因此AB^2=4OC^2=4PC*CQ=4AP*B

如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.

证明:(1)因为PA⊥平面ABC,且BC⊂平面ABC,所以PA⊥BC.又△ABC中,AB是圆O的直径,所以BC⊥AC.又PA∩AC=A,所以BC⊥平面PAC.(2)由(1)知BC⊥平面PAC,∵BC⊂

已知:AB是圆O直径,C是异于A B的圆周上任意一点,PA垂直于圆O所在平面.

连接CA,∵PA⊥⊙O所在平面∴PA⊥BC∵∠BCA为圆周角∴∠BCA=90°∴BC⊥CA∵PA,CA相交与P∴BC⊥平面PAC∴BC⊥PC

OB OA是圆O的半径,并且AO⊥OB,P是OA上任意一点,BP的延长线交圆O于Q,过Q点切线交OA的延长线于R,求证:

因为OB=OQ所以∠OBQ=∠OQB∠OBQ+∠BPO=90度∠OQB+∠RQP=90度所以∠BPO=∠RQP∠RQP=∠RPQ所以RP=PQ

圆O的半径为定长r,A是圆O内一定点,P是圆O上任意一点.线段AP的中垂线 l 和半径OP相交于Q,当点P在圆上运动时,

∵Q是AP中垂线上的点∴QA=QP这样QO+QA=OQ+QP=r∴Q的轨迹是椭圆(到两定点的距离之和等于定长的点的轨迹是椭圆)如下图(点击可放大)

如图,圆O的半径为定长r,A是圆O内一个定点,P是圆 上任意一点,线段AP的垂直平分线l和半径OP相交于点 Q.

由题目可知l为AP的垂直平分线,Q为l上的一点则AQ=PQOQ+QP=OP=r所以OP+AQ=r当P点在圆上运动时,Q的轨迹曲线为以A,O为焦点,2a=r的椭

P是圆x2+y2-4x-2y-20=0上任意一点,Q是直线4x+3y+19=0上任意一点,求|PQ|的最小值

(x-2)²+(y-1)²=25圆心C(2,1),r=5C到直线距离d=|8+3+19|/√(4²+3²)=6所以PQ最小=d-r=1

已知圆O的方程为x2+y2=1和点A(a,0),设圆O与x轴交于P、Q两点,M是圆OO上异于P、Q的任意一点,过点A(a

(1)∵直线l1过点A(3,0),且与圆C:x2+y2=1相切,设直线l1的方程为y=k(x-3),即kx-y-3k=0,则圆心O(0,0)到直线l1的距离为d=|3k|k2+1=1,解得k=±24,

已知圆C的方程为x^2+y^2=1,点A(3,0),P(-1,0),Q(1,0),M是圆C上异于P,Q的任意一点,过点A

1、设直线AM方程为y=k(x-3),联立圆的方程,当方程有唯一解,即直线与圆相切时k取得最大和最小值为+-根号2/4.2、可令角p'pA=a,则其余各边均可用a表示.可得圆C'的方程为(x-3)^2

如图,AB是⊙O的直径,点C是圆O上异于A,B的任意一点,直线PA垂直于圆O所在平面,PA=2AC,AD垂直于PC

因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角

已知OA和OB是⊙O的半径,并且OA⊥OB,P是OA上的任意一点,(不与O、A重合),BP的延长线⊙O于Q,过Q点作⊙O

做一条辅助线,连接OQOB,OQ是半径,得三角形BOQ是等腰三角形,所以∠OBQ=∠OQBOB⊥OA得∠OBP+∠OPB=90°QR是圆的切线,得∠OQR=∠OQB+∠PQR=90°得∠OBP+∠OP

对于抛物线y^2=4x上任意一点Q,点P(a,0)都满足PQ>=a,则a的取值范围是?

设Q(y^2/4,y)则PQ^2=(Y^2/4-a)^2+Y^2因为PQ^2≥a^2所以(Y^2/4-a)^2+Y^2≥a^2整理得(1/2)ay^2≤(1/16)y^4+y^2显然Y=0时成立得a≤

如图所示,过圆O:x^2+y^2=4与y轴正半轴的交点A做圆的切线l.M为l上任意一点,通过M做圆的另一切线,切点为Q,

设P为△MAQ的垂心,则PQ‖AO、AP‖OQ∴四边形AOQP为菱形.∴|PQ|=|OA|=2.设P(x,y)、Q(x0,y0),则x0=x,y-y0=2,∵x0^2+y0^2=4∴x^2+(y-2)