锐角三角形中abc对角ABC,二倍的cosA的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:52:39
三角形ABC是锐角三角形所以A+B>90°A>90°-BA与(90°-B)都是锐角,所以sinA>sin(90°-B)因为sin(90°-B)=cosB所以sinA>cosB
锐角三角形ABC,A+B=π-C>π/2,π/2>A>π/2-B>0,sinA>sin(π/2-B)=cosB
可能繁了点,但绝对正确严密,无需讨论倒推:A,B为锐角,则sinA,cosB∈(0,1)即证(sinA)^2>(cosB)^2即证(sinA)^2+(sinB)^2>1,运用降幂公式即证1/2*(1-
∵0∴0∴cos(C/2)>sin(C/2).又∵0∴-π∴-π/2∴cos((A-B)/2)>0,∴sin(A)+sin(B)=2sin((A+B)/2)cos((A-B)/2)=2sin((π-C
因为A+B+C=π,所以C2=π2−(A+B2),又有sinA=223,A为锐角得cosA=1−89=13所以sin2B+C2+cos(3π−2A)=sin2A2−cos2A=1+cosA2−(2co
1+cosA+cosB+cosC-(sinA+sinB+sinC)=2[cos(A/2)]^2+2cos(B+C)/2*cos(B-C)/2-2[sin(A/2)*cos(A/2)+sin((B+C)
tanA=-tan(B+C)=-(tanB+tanC)/(1-tanBtanC)由均值不等式,3=tanB+tanC>=2根号下(tanBtanC)所以tanBtanC=-3/(1-9/4)=12/5
因为a>b>c所以sina>sinb>sinc由二倍角sina>sinb>sinc,sina^2>sinb^2>sinc^21-cos2a>1-cos2b因为角为钝角,所以平方后要变号cos2a^2>
GF平行且等于BC的1/2,所以GF//DEEF=1/2*AB=DG(三角形ADB为直角三角形,从直角到斜边中点的连线等于斜边的一半)所以四边形DEFG是等腰梯形.希望对您有所帮助如有问题,可以追问.
C90A>90-B>0sinA>sin(90-B)=cosB同理sinB>cosAsinA+sinB>cosA+cosB
cos2A+cos2B+cos2Ccos2A+cos2B+cos2C=(cos2A+cos2B)+(cos2B+cos2C)+(cos2A+cos2C).用和差化积公式cos(a)+cos(b)=2c
由题意,tanA,tanB,tanC均为正因此tan(A+B)=-tanC=tanA+tanB/1-tanAtanB<0因为tanA+tanB>0所以tanAtanB>1
证明:已知三角形ABC是锐角三角形,为了不失一般性不妨令0
锐角三角形三个内角都是锐角,所以三个角的正切值都大于0,所以他们的正切值的和大于0再答:再答:这个是正切函数图像再答:再问:其实我问反了,应该是怎样证明是锐角三角形,现在也知道了,仍然给你满意吧!
AC*AB>0只能说明∠A是锐角
由于有角平分线,求最值可利用对称啊!设N关于AD的对称点为R,由于为锐角三角形,则R必在AC上.MN=MR,并作AC边上的高BE,E在线段AC上.BM+MN=BM+MR>=BE由于面积为15,则AC边
作PD,PE,PF分别垂直AB,BC,AC于D,E,F,连接CD,AE,BF,;由于PAPBPC两两垂直,故可知PA⊥平面PBC;而PE⊥BC,由三垂线定理得AE⊥BC;同理,BF⊥AC;CD⊥AB;
√3sinA=2sinCsinA因为sinA≠0,所以sinC=√3/2因为锐角三角形,C=60度S=0.5absinC=ab√3/4=3√2/2ab=6c^2=a^2+b^2-2abcosC7=a^
√3tanA-tanB=1+tanAtanB√3tan(A-B)=1tan(A-B)=√3/3A-B=30A=30+BA再问:sin(A+B)=sinC0