qbcd为正方形,e点在cd上,∠aae=60度,求∠aeb多少度
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 12:36:27
角FAP=45度,AF=根号2倍的AP,从余弦定理FP²=AF²+AP²-2AF×FP×cos45º=﹙2+1-2﹚AP²=AP²∴AF
解题思路:首先延长EB至H,使BH=DF,连接AH,证得△ADF≌△ABH,得出∠BAH=∠DAF,AF=AH,进一步得出△FAE≌△HAE,得出∠H=∠AFE,设BH为x,正方形的边长为a,在直角三
1、是证明:AF=√2DG∵四边形ABCD、EFGC都是正方形,∴分别延长EF、GF交AD、AB于P、Q点,易得:GC=FE=QB=EC=FG=PD∴AP=QF=BE=AQ=PF=DG,∴四边形AQF
延长EC至F'使CF'=AF,连BF'则容易证明两个直角三角形BAF和BCF'全等所以,∠ABF=∠CBF'BF=BF'BE=BEEF'=EC+CF'=EC+AF=EF所以,△FBE≌△F'BE所以,
显然,△ABE≌△ADF∴∠BAE=∠DAF∴∠CAE=∠CAF=30°∴△CAE≌△CAF∴CE=CF∵AE=AF∴AC垂直平分EF∴FG=EG=1,AG=√3∵△CEF是等腰直角三角形∴CG=EG
以线段AF为直径作圆,与BC交于点M,则∠AMF=90º,易证∠FMC=∠BAM,∠MCF=135º在AB上取点N,使得BN=BM,则AN=MC,∠BNM=45º,∴∠A
证明:作一边为AD顶点为A 角度等于∠BAE的角 并交CD的延长线于M点 AE平分∠BAF所以 角BAE=∠EAF=MAD 另根据四边形A
∵ABCD是正方形,∴AD=AB,∠D=∠B=90°,AB∥CD,∴∠AFD=∠BAF,将ΔADF绕点A旋转90°到ΔABG,则DF=BG,∠G=∠AFD=∠BAF=∠BAE+∠EAF,∵AF平分∠E
过点F做FM⊥AB,FM=AB,点A和点P是关于EF为对称轴的对称点,EF⊥AP∠MFE=∠BAP,利用等角的补角相等,△EFM≌△ABP.EF=AP=13
2、证明:将△ABE绕点A旋转,使AB与AD重合,旋转后点E的对应点为I,过点H作HP⊥BC于P,HQ⊥AB于Q,过点G作GK⊥CD交DC延长线于K∵正方形ABCD∴AD=AB=CD,∠BAD=∠AD
延长DC至E′,使CE′=AE连接BE′∴就有AE=CE′∴在△BAE、△BCE′中就有:BA=BC、∠BAE=BCE′=90°、AE=CE′∴△BAE≌△BCE′(SAS)∴∠ABE=∠CBE′又∵
延长CB使BM=DF连接AM△ADF≌△ABMAM=AF∠DAF=∠BAM∠DAF+∠BAF=90du3∠BAM+∠BAF=∠MAF=90°∠MAE+∠EAF=90°∠AEB+∠BAE=90°∠∠MA
解题思路:证全等,运用直角三角形斜边上的中线等于斜边的一半解题过程:不好意思,刚才吃饭了,答案发迟了,如图,连接AE,MD的延长线交AE于G,交AB于H∵M是AF的中点,N是EF的中点∴MN∥AE(三
设BE切⊙O于点G,连OB,OE,由切线长及推论,则有BG=BA,∠OBA=∠OBG,∵∠ODE=∠OGE=90°,∠OD=OG,OE=OE∴△ODE≅△OGE(HL),∴∠EOD=∠EO
/>1、△ABE的面积=½×1×x=½x△EFC的面积=½×(1-x)×(1÷2)=(1-x)/42、½x×50+(1-x)/4×100+[1-½x-
因为图在这上面不好画,麻烦自己画一下,由题意知,EC=1-x,DF=1-y由勾股定理得AB的平方+BE的平方=AE的平方,即就是AE的平方=1+x的平方(1)EC的平方+CF的平方=EF的平方,即就是
EG=DGEF=CGEG+EF=正方形边长aABCD周长=4a=16a=4SOEFCG周长=2a=8
∵EF⊥BE∴∠DEF=180°-90°-∠AEB=∠ABE∴直角三角形△ABE∽△DEF∵点E是AD的中点∴AE:AB=DF:DE=1:2∵BE^2=AE^2+AB^2=5,EF^2=ED^2+DF
连接AC、CF因ABCD、CEFG为正方形,则角ACD=角FCD=角BAC=45度,角ABP=90度则角ACF=角ACD+角FCD=90度因角FAP=45度=角CAF+角CAP,角BAC=45度=角C
设FC为X所以fh=fd=2-x因为HCF是rt△1+x²=(2-x)²解得x=四分之三,fh=四分之五因为∠rhf=90°所以∠bhr+∠chf=90因为∠bhr+∠brh=90