p是等腰三角形abc所在平面上一点,且三角形PAB,三角形PBC,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:37:06
p是等腰三角形abc所在平面上一点,且三角形PAB,三角形PBC,
点P是△ABC所在平面外一点,且P点到△ABC三个顶点距离相等,则P点在△ABC所在平面上的射影是△ABC的______

如图P是△ABC所在平面外一点,O是P点在平面a上的射影.若P到△ABC三个顶点的距离相等,由由条件可证得OA=OB=OC,由三角形外心的定义知此时点O是三角形的外心,故答案为:外;如图P是△ABC所

已知平面直角坐标系中,A(-3,-4)、B(2,8),点P在Y轴上,若ABC是等腰三角形,求点P的坐标

(0,43/24)、(0,(8-根号1650)/2)、(0,(2+2根号10)/2).设P(0,y)①PA=PB,(0-3)²+(y+4)²=2²+(y-8)²

P是△ABC所在平面外一点,O是点P在平面α上的射影,若△ABC是直角三角形,且PA=PB-PC

因为PO垂直于平面ABC,所以OA=OB=OC=根号下(PA平方-PO平方)=根号下(PB平方-PO平方)=根号下(PC平方-PO平方)所以O是三角形ABC的外心.

点P是三角形ABC所在平面外一点,若PA、PB、PC与这个平面所成角相等,则点P在平面ABC上的射影是三角形什么心

外心.作PO⊥平面ABC于O,连结OA、OB、OC,则∠PCO、∠PBO、∠PAO分别是PC、PB、PA与平面ABC所成的角,所以∠PCO=∠PBO=∠PAO.易证ΔPAO≌ΔPBO≌ΔPCO∴OA=

1.已知RT△ABC,∠ACB=90°,点P是△ABC所在平面外一点,若PA=PB=PC,那么P在平面ABC上的摄影O位

1由射影定律可知OA=OB=OC,所以O为重心,因三角形为rt三角,则o在ab中点2直线L与平面a内直线所成的最小角为60度,当直线B与直线L在平面a上的射影平行时,角度为60度,异面直线成的最大角为

正三角形ABC所在平面内有一点P,使得△PAB,△PBC,△PCA都是等腰三角形,则这样的P点有

4个,三角形ABC内一个(在重心处),三角形外有三个,分别作两个外角的角平分线的交点就是了.自己画一下就清楚了,如果正确就给分吧,急着要用.

正方形ABCD所在平面上存在点P,可使△PAB、△PAD、△PCD、△PBC都是等腰三角形

在一个平面内“点P,可使△PAB是等腰三角形”的条件是:点P在AB的中垂线上.则题中点P,应同时在正方形四条边的中垂线上,即在正方形四条边的中垂线的交点,正方形中心.

P是△ABC所在平面上的一点,若向量PA·PB=PB·PC=PC·PA,则P是的什么心?

∵PA·PB=PB·PC∴PA·PB-PB·PC=0∴PB·(PA-PC)=0∴PB·CA=0∴PB⊥CA同理可导出:PC⊥ABPA⊥BC(就是从三个等式中任取俩等式,移向,做运算,可得答案)

P是三角形ABC所在平面上一点,若PA*PB=PB*PC=PC*PA,则P是三角形ABC的什么心

答案是垂心因为PA*PB=PB*PC所以PB(PA-PC)=0即PB*CA=0即PB垂直于CA同理PA垂直于BCPC垂直于AB所以P是三角形ABC的垂心

P是三角形ABC所在平面上的一个点,PA+PB+2PC=0.三角形ABC面积为1.求三角形ABP的面积

如图所示过AB中点R作RC并延长至Q点,使得QR=(1/2)CR,再连接AR、BR取CR中点为P.由于四边形APBQ的对角线互相平分,因此四边形APBQ为平行四边形又PQ=2PC,所以在以AB为公共底

已知P为三角形ABC所在平面外一点,O为P在平面ABC上的射影,若PA垂直BC,PB垂直AC,则O是三角形ABC的

垂心证:已知PA垂直BC,且PO是平面ABC的垂线,即AO是PA在平面ABC内的射影,所以由三垂线定理逆定理得:AO垂直BC,同理,BO垂直AC.综上,点o为垂线焦点,即垂心.

P是等腰直角三角形ABC所在平面外一点,斜边AB=PC,A是在平面ABC上的射影

(1)PC=AB=√2*AC PC与平面ABC的角就是角PAC,cos角PAC=AC/PC=AC/√2*AC=√2/2 所以角PAC=45°(2)过C作AB的垂线交AB于D,D即A

设p是等边三角形ABC所在平面上一点,使三角形ABP,三角形BCP,三角形ACP都是等腰三角形,满足条件的P点有几个?

MS是10个··一个是三角形的中心··三个是在△三条边上做三个等边△··在AC的中垂线上做BP=AC,可以上面一个下面一个这样一条边有2个三边有6个

正三角形ABC所在平面内有一点P,使得三角形PAB  三角形PBC  三角形PCA都是等腰三角形,则

C,分别为中心,距A点正上方位置PA=AB(A,B,C各有一个),与A点在BC的异侧的有PB=BC(各三个)共7个

在△ABC所在平面上有一点P,满足向量PA+PB+PC=0,则△PBC与△ABC面积之比是

找出D使得向量PA+PB=PD,即有四边形APBD是平行四边形且CP=DP,C、P、D共线(请自行画图)设AB交DP于E,注意到平行四边形有性质对角线互相平分,所以1、E是AB中点,并且C、P、E共线

已知P是△ABC所在平面外一点,点O是点P在平面ABC上的射影.若PA=PB=PC,则O是△ABC的(  )

∵P是△ABC所在平面外一点,点O是点P在平面ABC上的射影又∵PA=PB=PC,则O点到A,B,C的距离也相等即OA=OB=OC则O点为△ABC的外心故选A

P是正△ABC所在平面外的一点,已知PA=PB=PC证明点P的射影在△ABC的重心上

过P作面ABC的垂线,垂足为O,连接OA,OB,OC,OP则OA=sqrt(PA^2-PO^2)OB=sqrt(PB^2-PO^2)OC=sqrt(PC^2-PO^2)∵PA=PB=PC∴OA=OB=