P为半圆弧AB上一点,PQ垂直于AB于Q

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 13:47:21
P为半圆弧AB上一点,PQ垂直于AB于Q
AB是半圆的直径,M为半圆上任意一点,C为弧AM的中点,CP垂直AB于点P,交AM于点D,连接BC,交AM于点E,请说明

最后的结论是AD=CD=DE也就是说D点是直角三角形ACE斜边的中点.证明如下:因为AB是直径,∠ACB=90°,CP垂直AB于点P,然后可以证明∠ACP=∠CBA∵C为弧AM的中点,可以得到∠CAD

如图,Rt三角形ABC中,角ACB=90度,P为AB 上一点,Q 为BC上一点,且PQ垂直AB,若三角形BPQ的面积等于

因为PQ⊥AB所以∠QPB=90°因为∠C=90所以∠C=∠QPB,又∠B为公共角所以△BPQ∽△BCA所以S△BPQ/S△BCA=BP²/BC²即1/4=2²/BC&#

如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B) 请问该题是哪一年中考试题

2002武汉的如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于点N,连接ON、NP.下列结论:①四边形ANPD

AB为圆O的一固定直径,它圆O分成上下两个半圆,自上半圆上一点C作弦CD垂直AB,角OCD的平分线交圆O于点P,

作OC的反向延长线交弧APB于点E,∵CD⊥AB∴弧CA=弧CD∵角COA=角BOE∴弧CA=弧BE∴弧AD=弧BE∵CP是角OCD的角平分线∴角DPC=角ECP∴弧DP=弧EP∴弧AD+弧DP=弧B

已知等边三角形的边长是1,点P是AB上任意一点,PQ垂直BC,QR垂直AC,RS垂直AB,垂足分别是Q,R,S,设BP=

因为等边三角形,所以每个角60°,若BP=X,则BQ=0.5X,则QC=1-0.5X,则RC=0.5*(1-0.5X),所以AR=1-0.5*(1-0.5X),同理AS=Y=0.5*(1-0.5*(1

1,E是边长为2的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ垂直于BC于点Q,PR垂直于B

第一题用面积来算,比较简单的;第二题我画个图给你就知道了.如果你在线的话,回复我(百度HI),我告诉你解题方法.

E是边长为1的正方形ABCD的对角线BD上一点且BE=BC,P为CE上一点,PQ垂直BC于点Q,PR垂直BE于点R

/>连接AC,交BD于点O则AC⊥BD,AO=CO∵正方形的边长为1,所以AC=√2,CO=√2/2连BP∵S△BPC=1/2*BC*PQ,S△BPE=1/2BE*PR,S△BCE=1/2*BE*CO

在三角形ABC中,AD垂直BC于D,BE垂直AC于E,P为AC上一点,且AP=AD,过点P作PQ//BC交AB于点Q,求

由题可知:AC×BE=AD×BC,AP=AD,所以AC×BE=AP×BC.因为PQ//BC,所以AP/AC=PQ/BC,所以AP×BC=AC×PQ,所以PQ=BE

如图,半圆的直径AB=12,P为AB上一点,点C,D为半圆的三等分点,求其中阴影部分的面积.

连接OC、OD、CD.∵△COD和△CPD等底等高,∴S△COD=S△POD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S扇形COD=60π×36360=6π.

如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A

(1)方法一:以O为原点,AB、OD所在直线分别为x轴、y轴建立平面直角坐标系,则点A(-2,0),B(2,0),P(3,1).设双曲线实半轴长为a,虚半轴长为b,半焦距为c,则2a=|PA|−|PB

如图,过等边三角形ABC的边AB上一点P,作PE垂直BC于E,Q为AC延长线上一点,当PB=CQ时,连PQ交BC边于D,

DE=1/2AB过P作PM∥AC,交BC于M;∵△ABC是等边三角形,且PM∥AC,∴△BPM是等边三角形;又∵PE⊥BM,∴BE=EM=1/2BM;(等边三角形三线合一)∵PM∥CQ,∴∠PMD=∠

如图、过边长为1的等边三角形ABC的边AB上一点P,作PE垂直于AC,当PA=CQ时,连接PQ,则DE的长为( 

过点Q做QF垂直AC的延长线于点F.然后很PA=CQ∠A=∠QCF=60°∠PEA=∠QFC=90°所以△APE全等于△CQF所以CF=EA同理△PED全等于△QFD所以DE=FD而AC=AE+ED+

聪明的进来看看已知AB是半圆O的直径,AB=16,P点是AB上的一动点(不与A,B重合),PQ垂直AB,垂足为P,交半圆

1.因为圆O2与半圆O,半圆O1及PQ都相切,所以连接O2O1,O2C,O2O.作O2K垂直于AB,垂足为K,所以有三角形O2K0和三角形O2O1K,设半径为Ro2k为Y所以(8-R)^2=R^2+Y

如图,已知AB为⊙O的直径,点C为半圆上的三等分点,在直径AB所在的直线上找一点P,连接CP交⊙O于点Q,使PQ=OQ,

①当P在直线AB延长线上时,如图所示:连接OC,设∠CPO=x°,∵PQ=OQ,∴∠OQP=∠CPO=x°,∴∠CQO=2x°,∵OQ=OC,∴∠OCQ=∠CQO=2x°,∵点C为半圆上的三等分点,∴

如图,AB为圆o 的直径,p为半圆弧的中点,过p任作直线pq(pq与线段ab不相交),过a,b分别做pq的垂线,cd为垂

   证明连PA、PB∵AB是直径∴∠APB=90°∴∠APC+∠BPD=90°∵AC⊥CD,BD⊥CD∴∠APC+∠CAP=90°∴∠CAP=∠BPD∵P为半圆弧的中点

如图,半圆O的直径AB=10cm,P为AB上一点,点C、D为半圆的三等分点,求阴影部分的面积

我只能猜测你的题意:PCD连成三角形,然后你求的是三角形外半圆内的阴影部分面积.解答如下:连接CODO因为点CD为半圆的三等分点,所以∠COD=180°/3=60°OC=OD=1/2*AB=5CM所以

如图,AB是半圆O的直径,C是半圆上的一点,弧AD=弧CD,DH垂直于AB,H为垂足,AC分别交BD、DH于点E、F.

证明:∵弧AD=弧CD∴∠ABD=∠CBD∵DH⊥AB∴∠ABD+∠HDB=90∵直径AB∴∠ACB=90∴∠CBD+∠CEB=90∴∠HDB=∠CEB∵∠CEB=∠AED∴∠AED=∠HDB∴DF=