逐步线性回归分析结果很差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:16:07
很简单,用前进、后退或逐步法都行,一般用逐步法然后看整个模型是否有统计学意义,就是有回归和残差那项若有意义(P小于0.05)则继续看每个参数的P值若P值大于0.05,剔除~最后得方程模型当然还需要注意
你得出这个模型的方法是进入法,R系数为.746,R方.556表示解释因变量R的比例为55.6%,模型虽然显著.但是回归系数没一个显著,标准回归系数没一个显著,因为回归系数的t检验,sig值都大于.05
ModelSummary是对模型拟合效果的总结,R是相关系数,R2是决定系数,系数越大表面拟合效果越好.ANOVA是方差分析,然后F检验Coefficients就是回归结果,得到的回归方程的系数
x=[100101.9108.2104.01102.6103.6];y=[174162.6233.8257322.4373.1];z=[88.9283.791.13127.24141.11150.37
你的回归方法是直接进入法拟合优度R方等于0.678,表示自变量可以解释因变量的67.8%变化,说明拟合优度还可以.方差检验表中F值对应的概率P值为0.000,小于显著度0.05,因此应拒绝原假设,说明
spss一般都建议选择最后一个模型这是逐步回归的基本常识我经常帮别人做这类的数据分析的
多元回归分析你要先确定一下自变量间是否存在严重的共线性,如果没有共线性,然后还要通过散点矩阵看看是否成线性关系,这些之后才可以做多元线性回归所以只看你现在的结果,的确只有x5才有意义,所以你要根据参考
如果你做的是多元回归看beta那列数据绝对值越大影响越大正负号是影响的方向
可以的,f值为8.14,p值小于0.05,说明回归模型是有意义的
你可以尝试着先绘制下散点图看看会不会用其他曲线拟合的效果会更好,很多时候数据用线性和一些非线性拟合后都会有显著效果,但是不一定是最佳的,所以需要判断自变量和因变量之间关系是否符合线性.如果仍然是符合线
从输出表看,这是个多元线性回归的分析结果啊!第一列显示了有6个自变量(第一行是常数项),因变量是什么楼主没有显示出来.第二列是分别是常数项与6个自变量的回归系数.第三列是回归系数的标准误差.第四列是标
(1)中F伴随的p值小于0.001,是怎么看出来的?(2)常数在0.005下显著,以及x1在0.001下显著是怎么看出来的?就是看最后一列的sig值,就是P值.它小于显著性水平,比如0.05,就显著.
分析差异显著性既然能回归了说明和哪些因素是显著性差异的看beta那列数据绝对值越大影响越大正负号是影响的方向也就是正相关还是负相关
因为在多元回归分析的过程中,会自动剔除一些对于因变量无显著影响的变量你只是用简单相关分析的不准确,有可能是变量之间存在一些共线性所以导致单个都相关,而在多元回归分析时会有些变量被剔除了,回归方程可以用
木有一个变量是显著的……所有变量的p值都好大的说~整个模型的p值也很大……结论就是这个模型本身统计不显著,各个变量也不显著.看回归分析结果,你先看右上角那个prob>F,那个是对整个模型的检验,如果这
统计可以用很科学很复杂的方式去处理,也可以简单化的处理,主要看你数据的用途,如果不是需要发表论文之类,可以按以下简单方式来操作,spss的回归过程,已经包含了验证.1、在spss里把A、B、C、D四个
1)R方=0.552说明存款利率作为自变量可以解释因变量(六个月后涨跌额)55.2%,Durbin-Watson=1.457表示残差自相关不强,①当残差与自变量互为独立时,D=2或DW越接近2,判断无
解题思路:计算解题过程:因为回归系数0.8>0,所以x和y正相关,所以相关系数r大于0最终答案:略
用MINITAB来分析如果是用EXCEL的话,用"工具栏"里的"数据分析"中,选定"回归",再选定数据做分析就可以了.
我晕,白写了啊,刚才不小心改掉了.首先说觉得你这个方程回归的不好,R系数太小,显著性不好.F值应该大于该自由度下查表的值才行,所有的t值大于查表得到的值,这样从方程到参量全部显著.不过受制于原始数据,