逆矩阵 AB=AC能推出B=C的条件

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 03:52:38
逆矩阵 AB=AC能推出B=C的条件
矩阵中AC=0 AB=0 b=c吗为什么

不对,如果A可逆的话容易推出B=C.但是没有要求A是什么矩阵就不好轻易推出来了,比如A是零矩阵,那么B,C都是任意的,也不一定相等.

判断题:若矩阵A,B,C有AB=AC ,则有B=C

奇怪!不对.只有A是列满秩时才有此结论.

如果AB都是n阶矩阵,且AB=0,能否推出A.B的行列式都为零?若不能,可否举出个反例.

若A,B其中一个是0矩阵,另一个就是任意的.若A,B都不是0矩阵的话,A,B的行列式都为0.

矩阵AB=0,其中矩阵A可逆,能推出矩阵B=0吗?

是的,由矩阵A可逆这个条件可以推出矩阵B=0AB=0,现在A可逆,那么在等式的两边同时左乘A的逆即A^(-1)故A^(-1)AB=0,显然A^(-1)A=E(单位矩阵)所以B=0

矩阵A,B,C,AB=AC,且A不是零矩阵,为什么B不等于C?按下面的证明出B=C请问这证明有什么问题?

第1步错了.A≠0,并不能说明A可逆.比如A=1224方阵A可逆的充分必要条件是|A|≠0,而不是A≠0.再问:那如果假设A的逆存在(或者在一道题中先证出了A的逆存在),就能够推出B=C了吗?再答:是

设A是m*n矩阵,C和B均为n*s矩阵,且AB=AC,B不等于C,证明:r(A)

因为AB=AC所以A(B-C)=0所以B-C的列向量都是Ax=0的解又因为B≠C所以B-C≠0所以Ax=0有非零解所以r(A)

矩阵A可逆,并且AB=AC,求证明B=C.

AB=AC,而矩阵A可逆,设其逆矩阵为A^(-1)在等式两边同时左乘A^(-1),得到A^(-1)AB=A^(-1)AC,显然A^(-1)A=E,故B=C

若AB=BA,AC=CA.证明A.B.C是同阶矩阵

个人认为那个“问题补充”里的条件用不到,就可以证明了.证:由于A和B能做乘法,所以A的列数=B的行数,否则矩阵乘法无法进行.同样B和A也能做乘法,所以B的列数=A的行数.设A是m*n矩阵,则B一定是n

两个非零矩阵A ,B,如果AB=0,是否能推出A或B的行列式为零

可以.但A,B必须是同阶方阵若不是同阶方阵,则不行

"若矩阵A,B,C 有AB=AC ,则有 B=C"这对吗?

不对.只有当A是列满秩时才有此结论!

矩阵AB=AC,A不等于0矩阵,如果A是m*n矩阵,且R(A)=n,则为啥能推出B=C?

AB=AC,则A(B-C)=0所以B-C是由Ax=0的解空间中向量构成的矩阵A即便不是零矩阵,只要A的行列式等于0,Ax=0也能有非零解,故B-C可以不等于零而A是m*n矩阵,r(A)=n时,Ax=0

设A ,B为n阶矩阵,AB=A+B,怎么推出(A-E)(B-E)=E?

AB=A+BAB-A=BA(B-E)=B1AB=A+BAB-B=A(A-E)B=A22式左乘1式得(A-E)BA(B-E)=AB当且仅当A与B可交换时,即AB=BA时得(A-E)AB(B-E)=AB(

设A,B,C和D都是二阶矩阵,AB=CD,试问是否可以推出对所有二阶矩阵X都有AXB=CXD?

这个结论不成立.反例如图.经济数学团队帮你解答.请及时评价.

老师,线性代数问题老师,为什么非齐次任意两个解的差是对应齐次方程组的解?还有矩阵AB=0为什么能推出r(A)+r(B)小

(1)设α,β都是Ax=b的解,则有Aα=b,Aβ=b.于是A(α-β)=Aα-Aβ=b-b=0,于是α-β是Ax=0的解.(2)若AB=0,则B的每一列都是Ax=0的解,所以B的秩R(B),即B的列

设ABC为同阶矩阵,若AB=AC,则B= C对吗

不对.比如B=0;c只是和A相关的为0就不行.AB=AC可变形为A(B-C)=0,即若A不为0,问是否存在D时AD=0?肯定存在,比如A={(1,0)',(0,0)'}D={(0,0)',(0,1)'

设ABC三矩阵,问何时AB=AC,可以推出B=C

A列满秩时,齐次线性方程组Ax=0只有零解.若AB=AC则A(B-C)=0所以B-C的列向量都是Ax=0的解所以当A列满秩时,B-C=0即有B=C