迹等于特征值之和
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 23:17:41
因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.
考虑某个特征值s’的特征子空间V',V'的维数就是s’的几何重数m,再取V'的一组基(由m个线性无关的向量组成),扩充这组基为原n维空间V的一组基,线性变换在这组新基下的表示矩阵可以写成块上三角阵的形
矩阵的特征多项式,你知道吗?xE-A的那个,把行列式展开,是一个n次多项式.由根系关系可得.特征值的和就等于多项式得根得和,就是第n-1次项的系数,是a11+a22+`````+ann总之,你把那个行
因为A乘列向量(1,1,1.,1)^T时相当于把A的各行加起来构成一个列向量
-2
不是指一个矩阵化简之后的矩阵;111205243这个矩阵的主对角线上的元素是1、0、3
A的各行元素之和为2,说明A(1,1...,1)^T=2(1,1,...,1)即2是A的特征值所以4是A^2的特征值所以4/3是1/3A^2的特征值所以3/4是(1/3A^2)^-1的特征值(B)正确
写出行列式|λE-A|根据定义,行列式是不同行不同列的项的乘积之和要得到λ^(n-1)只能取对角线上元素的乘积(λ-a11)(λ-a22)...(λ-ann)所以特征多项式的n-1次项系数是-(a11
对.矩阵对角线上的值之和称为矩阵的“迹”,记作tr(A)可以证明,任何两个相似的矩阵,其"迹"相等.相似矩阵的特征值是一样的,所以A的特征值可以等于某个上三角矩阵的特征值.上三角矩阵的迹就是其特征值之
这是个定理,教材中应该有证明A的特征多项式f(λ)=|A-λE|一方面从行列式的定义分析它的λ^n,λ^(n-1)的系数及常数项另一方面f(λ)=(λ1-λ)...(λn-λ)比较λ^n,λ^(n-1
初等变换会改变矩阵的特征值.只有相似变换不改变矩阵的特征值,一般的其他的变换都会改变特征值的.
因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘
利用特征值的定义和性质可以如图求出特征值是-2,1,3.经济数学团队帮你解答,请及时采纳.
你的邮箱?再问:lh07090808@126.com再答:已发请查收
|λE-A|=|λ-a11-a12...-a1n||-a21λ-a22.-a2n||.||-an1-an2.λ-ann|=(λ-λ1)(λ-λ2)...(λ-λn)λ^n-(a11+a22+...+a
分析:因为A的秩等于1,所以A的行向量中有一行非零(记为α,不妨记为列向量)且其余行都是它的倍数.将这些倍数构成列向量β,β≠0则有A=βα^T.如:A=246123000则α=(1,2,3)^T,β
貌似你问了两边.这两句话,都依赖于,矩阵有n个特征值(重根按重数计算)相似,迹相同,行列式相同,这个不依赖于矩阵有n个特征值,也不依赖于他们可对角化.
是的n阶多项式|A-λE|=0有n个根,重根按重数计.
对于ATA这样的矩阵才有这个性质,用二次型来证明,不懂再留言吧