连接任意四边形中点的线段所围成的图形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 02:19:30
平行四边形.因为:对边分别等长(长度都是等于对角线的一半)的四边形.
(1)连接平行四边形对角线利用中位线性质所得顺次连接平行四边形各边中点的四边形对边分别为平行四边形对角线的0.5倍也是平行四边形(2):四边形ABCD的各边中点依次为EFGH.EF为三角开ABD的中位
平行四边形的判定方法:两组对边分别平行的四边形是平行四边形一组对边平行且相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形两条对角线互相平分的四边形是平行四边形两组对角分别相等的四边形是平行
360除以3等于120每个角是120度.再答:不对。再答:180除以3等于60每一个角是60度。再问:不对再答:采纳好不好?
如果ABCD为四边形,连接AC,BD,根据三角形中位线定律证明得到其四边形对应两边相等,那就是平行四边形啦
平行四边形设该空间四边形为ABCD边ABCBCDAD的中点分别为E,F,G,H因为E,H分别为AB,AD的中点所以EH为三角形ABD的中位线所以EH//BD且EH=1/2BD同理可得FG//BD且FG
任意连接四边形ABCD各边的中点,那么四边形EFGH与四边形ABCD的面积的最简单整数比是(1:2)再问:能说一下为什么吗?再答:连接AC,BD因为都是中点,可以知道三角形DHG面积=三角形ADC面积
已知:如图,E、F、G、H分别为矩形ABCD四边的中点.求证:四边形EFGH为菱形.证明:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=12BD,同理FG=12BD,HG=12AC,E
证明:设四边形为ABCD,E,F,G,H分别是AB,BC,CD,AD的中点连接AC,BD∵E是AB的中点,H是AD的中点∴EH是⊿ABD的中位线∴EH//BD∵F是BC的中点,G是CD的中点∴FG是⊿
证明:四边形ABCD中,EFGH分别为ABBCCDDA中点联结EFGH,在三角形ABC中,EF是AC边的中位线,EF平行AB且等于1/2AB,同理,GH平行AB且等于1/2AB,所以EF平行GH且等于
证明:假设该四边形为ABCD,AB、BC、CD、DA上的中点分别是E、F、G、H,在△ABC中,EF是中位线,所以EF平行AC,且EF=AC*1/2,△ADC中,GH是中位线,所以GH平行AC,且GH
四边形ABCD,AB,BC,CD,DA的中点分别是E,F,G,H连接四边形的两条对角线AC,BD交与点O连接EO,FO,GO,HO在三角形ABD中EH是中位线,与AC交与点P所以EH//BD所以AP/
当原四边形对角线互相垂直时.再问:有没有过程再答:不好意思,应该是当原四边形对角线相等时。顺次连接任意四边形各边中点,那么证明新四边形是平行四边形用【两组对边分别相等】(三角形中位线定理)那么如果原四
满意答案小安妮的小泰迪7级2011-04-25连接四边形的两条对角线,你会发现四个中点的连线是三角形的中位线,然后两两平行,证出是平行四边形追问:你能配上图来解说吗?回答:E,F,G,H是中点,EF是
这个是错的
作四边形的对角线则新四边形的边分别是一个三角形的中位线中位线平行于底边,即对角线所以新四边形是平行四边形
正方形的还是正方形,矩形的是菱形,菱形的是矩形,平行四边形的是平行四边形,等腰梯形的是菱形
任连一条对角线,则上面的中点连线为两个三角形的中位线,分别与对角线平行,一对对边平行,同理另一组对边也平行.故对边互相平行,一般情况下为平行四边形.对角线垂直,得到矩形;对角线相等,得菱形