Pn中全体对称矩阵组成数域P上线性空间维数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:10:56
Pn中全体对称矩阵组成数域P上线性空间维数
全体3阶实对称阵在矩阵的加法和数乘下构成的线性空间的维数为?为什么答案是6?

表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的

线性代数中对称矩阵的正交化.求正交阵P使为对角阵

求特征向量,再正交化,单位话,就得到了

证明:若P^n中任意非零向量都是数域P上n级矩阵A的特征向量,则A必为数量矩阵

Ae1=a1e1,Ae2=a2e2,...,Aen=anen,其中a1,a2,...,an是特征值,e1,e2,...,en是单位阵的n个列,于是有AE=ED,其中D是对角元为a1,a2,...,an

实数域上全体n阶对称矩阵组成的集合按合同分类 共有多少类?

共有n(n+1)/2类!因为实数域上全体n阶对称矩阵组成的集合构成一个n(n+1)/2的线性空间,按照同构的原理,共有n(n+1)/2类!

如何证明全体上三角矩阵,对于矩阵的加法与标量乘法在实数域是线性空间

V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,

非对称矩阵相似对角化过程中的相似变换P为什么一定是该矩阵不同特征值对应的特征向量所组成的矩阵?

令P=(p1,p2,p3)则AP=(Ap1,Ap2,Ap3)=Pdiag(a,b,c)=(ap1,bp2,cp3)所以Ap1=ap1Ap2=bp2Ap3=cp3这样就可知特征值,特征向量,可逆矩阵P,

1.实数域 上全体 矩阵记为 ,全体可逆矩阵记为 ,全体行列式为1的矩阵记为 .(1) 证明 依矩阵的加法和乘法

数域上全体矩阵记为,全体可逆矩阵记为,全体行列式为1的矩阵记为.(1)证明依矩阵的加法和乘法构成环.(2)证明依矩阵的加法和乘法构成非交换环.(3)证明为的子环.2.掌握关系的矩阵表示及复合关系的矩阵

若p^n中任意一个非零向量都是数域p上n阶矩阵a的特征向量,则a必为数量矩阵.如何证明?

首先,因为属于不同特征值的特征向量的和不是特征向量所以A的特征值为k,k,...,k(即k是A的n重特征值)再由n维基本向量组ε1,ε2,...,εn是特征向量所以(ε1,ε2,...,εn)^-1A

验证n阶对称阵,对矩阵加法及矩阵的数乘构成数域R上的线性空间

因为矩阵的加法运算满足交换,结合,有零矩阵,有负矩阵矩阵的数乘运算也满足相应的4条运算性质所以若证明n阶对称阵对矩阵加法及矩阵的数乘构成数域R上的线性空间,只需证明n阶对称阵对矩阵加法及矩阵的数乘运算

实数域R上全体二阶矩阵构成的线性空间的维数,并写出一组基?

很简单,维数为4基,就这么取(打出来肯定提交不了,太多数字)2阶矩阵不是有4个元素吗?一个元素取1,其他元素取0.这样的2阶矩阵有4个,这就是他的基类似的你可以定义m*n矩阵的维数为mn,基的定义差不

有关高等代数的问题为什么数域P上任意一个n维线性空间都与Pn同构.希望能解释清楚.

正确.因为与A可交换的矩阵为对角矩阵.[-1,0;0,0],[0,0;1,0],[2,0,0,1]为所求的一组基.这样可以么?

数域p上n级下三角矩阵关于矩阵加法和数乘构成的线性空间的维数是多少?

那就看此线性空间中的一组基到底含有多少个向量呗?这组基中有多少个向量,空间维数就是多少这组基要能线性表示出空间中任意一个向量(在这里,就是任意一个下三角阵)n阶下三角阵中到底有多少个位置可以取非零数呢

全体可逆矩阵是否构成实数域上的线性空间?全体N阶矩阵呢?如果是,请求出该空间的维数和一组基

全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi

A为实对称矩阵 P为可逆矩阵 为什么P‘AP是对称矩阵

设B=P‘AP那么B‘=(P‘AP)‘=(AP)‘P=P‘A‘P因为A‘=A,所以B‘=P‘AP=B,所以P‘AP也是对称矩阵

设矩阵A和P都是n阶矩阵,且A为对称矩阵,证明:P^TAP也是对称矩阵

再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力

在线性空间Pn乘以n中,A是一个取定的n阶方阵.证明所有与A乘法互换的矩阵全体W是P的一个子空间

设B,C是W中任意两个元素,则(kB)A=k(BA)=k(AB)=A(kB),即kB∈W.(B+C)A=BA+CA=AB+AC=A(B+C),即B+C∈W,因此W对于加法和数乘运算封闭,W是一个子空间

实数域上的2x1的全体矩阵其实就是复数的全体

应该是(1x2)可以有两种解释:一是从数系理论理解,过于专业,我就不说了.二是简易的理因为复平面是二维的做如下对应关系(a,b)->a+bi其中加减和数乘运算同一般的向量运算,约定乘法如下(a,b)*

高等代数--证明--在数域p上,任意一个对称矩阵都合同于一个对角阵

用矩阵分块来证明.A=[a11aT][aA1]取P为[1-a11aT][0I]则PTAP=[a110][0B]B=A1-a11(-1)aaT重复讨论n-1方阵B即可或者用二次型化标准型方法得到A的有理

线性空间的证明检验集合(n阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘)是否构成实数域R上的线性空间

反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩