过点H(1,-1)作抛物线x2=4y的两条切线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 14:05:36
1):y=1/18x?-4/9-10=0x?-8x-180=0(x-18)*(x+10)=0x1=18,x2=-101/18x?-4/9-10=-10x=0或4A(18,0),B(0,-10),C(4
y'=2x+1,设切点坐标为(x0,y0),则切线的斜率为2x0+1,且y0=x02+x0+1于是切线方程为y-x02-x0-1=(2x0+1)(x-x0),因为点(-1,0)在切线上,可解得x0=0
设P(a,b)b=a^2/4PB恰好切抛物线与点P,则PB:y=ax/2-a^2/4=ax/2-b由圆心到直线距离=1得:/b-1//根号(1+b)=1,得b=0或3(0舍去)由于两个P对称,不妨设a
(1)证明:∵y=x24,∴y′=x2,∴kl=y′|x=x1=x12,∴l:y=x12(x−x1)+x124=x12x−x124,∴C(x12,0),设H(a,-1),∴D(a,0),∴TH:y=-
设直线AB方程为y-4=k(x-1);联立直线方程与y=2x2得:2x2-kx+k-4=0设A(x1,y1),B(x2,y2)由韦达定理得x1+x2=k2,x1x2=k−42∵y=2x2∴f′(x)=
http://wenku.baidu.com/view/db2f7f3231126edb6f1a1022.html最后一题
(Ⅰ)当M的坐标为(0,-1)时,设过M点的切线方程为y=kx-1,由x2=4yy=kx−1,消y得x2-4kx+4=0,(1)令△=(4k)2-4×4=0,解得:k=±1,代入方程(1),解得A(2
4y=x^2知y=X^2/2对x求导,y=x/2即为抛物线上每一点的切线斜率(这个你们应该学过)然后设AB的坐标,即可把AB的方程表示出来(但其中肯定还有些是未知的参量)两条直线其实就是一个二元一次方
(1)令y=0,得x2-1=0解得x=±1,令x=0,得y=-1∴A(-1,0),B(1,0),C(0,-1);(2分)(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=45°.∵AP∥C
OA=5,所以点A的坐标为(5,0)或(-5,0),点O的坐标为(0,0),把A(5,0)和O代入y=(1/6)x的平方+bx+c,解b=-6/5,c=0,所以抛物线的解析式为y=(1/6)x^2-6
就是又对抛物线方程X^2=4y进行求导,也就是求斜率,求得斜率后带入PA和PB的点斜式切线方程.
你的答案是相当准确呀因为X2=4Y中,Y显然大于等0,而P点(t,-4)的纵坐标=-4小于0,故P肯定不在抛物线上.PA,PB交于P点,所以P点坐标满足PA,PB方程.因为(X1,Y1)(X2,Y2)
A.4焦点(p/2,0)直线方程y=k(x-p/2)y^2=k^2x^2-k^2px+k^2p^2/4-2px=0k^2x^2-(k^2p+2p)x+k^2p^2/4=0x1x2=p^2/4(y1^2
(一般问题特殊化)根据题意可设抛物线的方程为x2=2py(p>0)过点M(0,1)任作一条直线交抛物线C于A(x1,y1),B(x2,y2)两点都有x1•x2=-2,考虑特殊情况也成立,故考虑直线为y
这是菁优网答案,比较不错的(1)当m=3时,y=-x2+6x令y=0得-x2+6x=0∴x1=0,x2=6,∴A(6,0)当x=1时,y=5∴B(1,5)∵抛物线y=-x2+6x的对称轴为直线x=3又
证明如下:有抛物线y=x^2可求出导数,则可求出过点(x1,y1)的切线y=2x1*(x-x1)+x1^2,=2x1*x-x1^2同理可求出过点(x2,y2)的切线y=2x2*x-x2^2,两点相交,
∵点H在椭圆x29+y24=1上,∴H(3cosθ,2sinθ),∵过椭圆x29+y24=1上一点H(3cosθ,2sinθ)作圆x2+y2=2的两条切线,点A,B为切点,∴直线AB的方程为:(3co
设直线:AB:y=kx-1,A(x1,y1),B(x2,y2),R(x,y),由题意F(0,1).由y=kx-1,x2=4y,可得x2=4kx-4.∴x1+x2=4k.∵AB和RF是平行四边形的对角线
我的线性忘记的差不多,不过你去看看http://czsx.cooco.net.cn/testdetail/31528/啦~~里面有