过正方形abcd对角线bd上一点g,作ce垂直bc于e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:05:36
过正方形abcd对角线bd上一点g,作ce垂直bc于e
智商高的进1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG

(1)易证GC=DF/2=GE[直角三角形斜边上的中线等于斜边的一半]∠CGE=2∠GDC+2∠GDE=2∠EDC=90°(2)连结GA,易证GA=GC,过G作GHAB于H,易证AH=EH,GA=GE

已知正方形ABCD的边长为a,两条对角线AC BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC BD 的垂线

(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1

(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E

如图,过正方形ABCD对角线BD上的一点P,作PE⊥BC于E,作PF⊥CD于F,求证:AP=EF 如图,过正方形ABCD

证明:连接PC,∵直线BD是轴对称图形正方形ABCD的一条对称轴,点P在BD上,且A,C是一对对称点∴AP=CP又易证四边形ECFP是矩形∴EF=PC∴AP=EF

如图:E是边长为1的正方形ABCD的对角线BD上一点

把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,

如图1 正方形ABCD的对角线AC BD 相交于点O E是AC上一点,过点A作AG⊥EB 垂足为G AG交BD于F 求证

(1)∵AG⊥BEAC⊥BD∴∠GAE+∠AEG=∠EBO+∠BEO=90°∵∠AEG=∠BEO∴∠GAE=∠EBO即∠FAO=∠EBO∵AO=BO∠AOF=∠BOE∴△AOF≌△BOE∴OE=OF(

如图.过正方形ABCD的顶点A作对角线BD的平行线a,E为直线a上一点,且BE=BD,∠EBD是锐角.若正方形ABCD的

四边形ABCD是正方形,AB=AD=2,BE=BD=√AB²+AD²=√8=2√2,过B作BF垂直a于F,因,角ABD=45度,a//BD,所以,角FAB=角FBA=角ABD=45

已知正方形ABCD中,E为对角线BD上一点,过E点作EF垂直BD交BC于F

(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C

如图,在正方形abcd中,e为对角线bd上一点,过点e作ef垂直于bd交bc于e于f,连接df,g为df中点,连接eg、

(1)在Rt△FCD中,∵G为DF的中点,∴CG=1/2FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E

在正方形ABCD中BD是对角线,过点C作CF‖BD,E是CF上一点,四边形BEFD是菱形,求角BEF的度数

过D,E作菱形的高DH,EK,连AC,由平行线间的距离处处相等,得DH=EK=AC/2=BD/2,所以在直角三角形BEK中,EK=BD/2=BE/2,所以∠DBE=30°,∠BEF=180-30=15

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥B

解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥B

解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证

如图,过正方形ABCD对角线BD上的一点P,作PE⊥BC于E,作PF⊥CD于F,求证:AP=EF

过P,作FP延长线交AB于M,(连结EF)则PE=PM,EB=MB,PEBM为小正方形AM=AB-MB=大正方形边长-小正方形边长PF=MF-PM=大正方形边长-小正方形边长因此,三角形AMP与三角形

已知四边形ABCD是正方形,过正方形ABCD的对角线BD上一点作PE垂直BC于点E,作PF垂直CD于点F.证明AP=EF

如图,过点P作AB的垂线,垂足为G已知ABCD为正方形,BD为对角线则,∠1=∠2=45°因为PE⊥BC,PG⊥AB所以,∠PGB=∠PEB=90°PB公共所以,Rt△PGB≌Rt△PEB(AAS)所

如图,平行四边形ABCD中,过对角线BD上一点P作EF平行BC

如图所示,三角形ABD与三角形BCD面积相等,EF//BC,GH//AB,可得三角形HPD与三角形PFD面积相等,三角形EBP与三角形BGP面积相等,由此可得:平行四边形AEPH与平行四边形PGCF面

如图,正方形ABCD中,E是对角线BD上一点,过点E作EF⊥CE交AB于点F.

ABCD为正方形,所以角B=90°,角DBC=45°.又因为EF⊥CE,所以A,B,C,D四点共圆,所以角EFC=角DBC=45°,所以△CEF为等边直角三角形,EF=EC/根号2而FC=根号(BC&

已知正方形ABCD的对角线AC、BD相交于点D,E是AC上一点,连接EB,过点A作AM⊥BE,垂足

1、因为OB=OA∠OEB+∠OFM=∠OFA+OFM=∠OFA+∠OAF=180度所以∠OEB=∠OFA又因为∠AOF=∠BOE=90度所以根据角边角定理推出三角形AOF≌三角形BOE所以推出OE=

如图,P是正方形ABCD对角线BD上一点

连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P