过正方形abcd对角线bd上一点g,作ce垂直bc于e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 19:05:36
(1)易证GC=DF/2=GE[直角三角形斜边上的中线等于斜边的一半]∠CGE=2∠GDC+2∠GDE=2∠EDC=90°(2)连结GA,易证GA=GC,过G作GHAB于H,易证AH=EH,GA=GE
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E
证明:连接PC,∵直线BD是轴对称图形正方形ABCD的一条对称轴,点P在BD上,且A,C是一对对称点∴AP=CP又易证四边形ECFP是矩形∴EF=PC∴AP=EF
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
(1)∵AG⊥BEAC⊥BD∴∠GAE+∠AEG=∠EBO+∠BEO=90°∵∠AEG=∠BEO∴∠GAE=∠EBO即∠FAO=∠EBO∵AO=BO∠AOF=∠BOE∴△AOF≌△BOE∴OE=OF(
四边形ABCD是正方形,AB=AD=2,BE=BD=√AB²+AD²=√8=2√2,过B作BF垂直a于F,因,角ABD=45度,a//BD,所以,角FAB=角FBA=角ABD=45
(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C
(1)在Rt△FCD中,∵G为DF的中点,∴CG=1/2FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E
过D,E作菱形的高DH,EK,连AC,由平行线间的距离处处相等,得DH=EK=AC/2=BD/2,所以在直角三角形BEK中,EK=BD/2=BE/2,所以∠DBE=30°,∠BEF=180-30=15
解题思路:利用正方形的性质和旋转的性质求证。解题过程:过程请见附件。最终答案:略
解题思路:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证
EG=DGEF=CGEG+EF=正方形边长aABCD周长=4a=16a=4SOEFCG周长=2a=8
过P,作FP延长线交AB于M,(连结EF)则PE=PM,EB=MB,PEBM为小正方形AM=AB-MB=大正方形边长-小正方形边长PF=MF-PM=大正方形边长-小正方形边长因此,三角形AMP与三角形
提问何在?
如图,过点P作AB的垂线,垂足为G已知ABCD为正方形,BD为对角线则,∠1=∠2=45°因为PE⊥BC,PG⊥AB所以,∠PGB=∠PEB=90°PB公共所以,Rt△PGB≌Rt△PEB(AAS)所
如图所示,三角形ABD与三角形BCD面积相等,EF//BC,GH//AB,可得三角形HPD与三角形PFD面积相等,三角形EBP与三角形BGP面积相等,由此可得:平行四边形AEPH与平行四边形PGCF面
ABCD为正方形,所以角B=90°,角DBC=45°.又因为EF⊥CE,所以A,B,C,D四点共圆,所以角EFC=角DBC=45°,所以△CEF为等边直角三角形,EF=EC/根号2而FC=根号(BC&
1、因为OB=OA∠OEB+∠OFM=∠OFA+OFM=∠OFA+∠OAF=180度所以∠OEB=∠OFA又因为∠AOF=∠BOE=90度所以根据角边角定理推出三角形AOF≌三角形BOE所以推出OE=
连接PC,∵PE⊥DC,PF⊥BC,ABCD是正方形,∴∠PEC=∠PFC=∠ECF=90°,∴四边形PECF为矩形,∴PC=EF,又∵P为BD上任意一点,∴PA、PC关于BD对称,可以得出,PA=P